Inducement of Itinerant Electron Transport in Charge-Ordered Pr0.6Ca0.4MnO3 by Ba Doping
详细信息    查看全文
  • 作者:N. Ibrahim ; A. K. Yahya
  • 关键词:Ba 2+ substitution ; Conduction electronic bandwidth ; Ferromagnetic–paramagnetic transition ; Magnetoresistance ; Manganites
  • 刊名:Journal of Superconductivity Incorporating Novel Magnetism
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:29
  • 期:4
  • 页码:911-922
  • 全文大小:762 KB
  • 参考文献:1.Dagotto, E., Hotta, T., Moreo, A.: Phys. Rep. 344, 1–153 (2001)ADS CrossRef
    2.Tokura, Y., Tomioka, Y.: J. Magn. Magn. Mater. 200, 1–23 (1999)ADS CrossRef
    3.Jin, S., Tiefel, T.H., Mc Cormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Science 264, 413–415 (1994)ADS CrossRef
    4.Zener, C.: Phys. Rev. B 82, 403–405 (1951)ADS CrossRef
    5.Millis, A.J., Shraiman, B.I., Muller, R.: Phy. Rev. Lett. 77, 175–178 (1996)ADS CrossRef
    6.Tomioka, Y., et al.: pp 155–175, Kluwer Academic/Plenum Publisher (1999)
    7.Li, Z.Q., et al.: Physica B. 351, 114–120 (2004)ADS CrossRef
    8.Li, R., Qu, Z., Fang, J.: Physica B 406, 1312–1316 (2011)ADS CrossRef
    9.Li, R., Pi, L., Zhang, Y.: Solid State Commun. 152, 616–620 (2012)ADS CrossRef
    10.Niebieskikwiat, Sanchez, R.D., Caneiro, A.: J. Magn. Magn. Mater. 237, 241–249 (2001)ADS CrossRef
    11.Wang, K.F., Wang, Y., Wang, L.F., Dong, S.: Phys. Rev. B. 73, 134411–1–134411-10 (2006)ADS
    12.Rama, N., Sankaranarayanan, V., Rao, M., SR.: J. Magn. Magn. Mater. 292, 468–475 (2005)ADS CrossRef
    13.Khelifi, J., Tozri, A., Issaoui, F., Dhahri, E., Hlil, E.K.: Ceramics International 40, 1641–1649 (2014)CrossRef
    14.Misra Sushil, K., et al. J. Magn. Magn. Mater. 322(19), 2902–2907 (2010)ADS CrossRef
    15.Narsinga Rao, G., et al.: J. Phys. D: Appl. Phys. 42, 095003 (2009)ADS CrossRef
    16.Hwang, H.Y., et al.: Phys. Rev. Lett. 75(5), 914–917 (1995)ADS CrossRef
    17.Sacanell, J., et al.: J. Phys: Condens. Matter. 19, 186226 (2007)ADS
    18.Kim, K.H., Uehara, M., Hess, C., Sharma, P.A., Cheong, S-W.: Phys. Rev. Lett. 84, 2961 (2000)ADS CrossRef
    19.Hongwei, Qin, et al.: Materials Transaction 45(4), 1251–1254 (2004)CrossRef
    20.Krishna, D.C., Reddy, V.P. J. Alloys Compd. 479, 661–669 (2009)CrossRef
    21.Venkataiah, G., Reddy, V.P.: Solid State Commun. 136, 114–119 (2005)ADS CrossRef
    22.Venkataiah, G., Prasad, V., Reddy, V.P.: J. Alloys Compd. 429, 1–9 (2007)CrossRef
    23.Munirathinam, B., et al.: J. Phys. Chem. Solids 73, 925–930 (2012)ADS CrossRef
    24.Sundaresan, A., et al.: Phys. Rev. B 57, 2690–2693 (1998)ADS CrossRef
    25.Mollah, S., et al.: J. of Magn. Magn. Mater. 284, 383–394 (2004)ADS CrossRef
    26.Dogra, A., et al.: J. Alloys Compd. 493, L19–L24 (2010)CrossRef
    27.Dogra, A., et al.: Supercond. Nov. Magn. 24, 1425–1431 (2011)CrossRef
    28.Raveau, B., et al.: J. Phys: Conds. Matter. 15, 7055–7062 (2003)ADS
    29.Zhu, D., et al.: J. Appl. Phys. 95, 4245–4250 (2004)ADS CrossRef
    30.Thanh, T.D., et al.: Phys. B 407, 145–152 (2012)ADS CrossRef
    31.Smolyaninova, V.N., et al.: J. Magn. Magn. Mater. 248, 348–354 (2002)ADS CrossRef
    32.Wang, K.F., et al.: Thin Solid Films 518, e38–e41 (2010)ADS CrossRef
    33.Tomioka, Y., et al.: Phys B 237–238, 6–10 (1997)CrossRef
    34.Lees, M.R., et al.: J. Phys: Condens. Matter. 8, 2967–2979 (1996)ADS
    35.Lees, M. R., et al.: Physica B 223&224, 532–534 (1996)CrossRef
    36.Raveau, B., Maignan, A., Martin, C.: J. Solid State Chem. 130, 162–166 (1997)ADS CrossRef
    37.Hebert, S., Maignan, A., Martin, C., Raveau, B. Solid State Comm. 121, 229–234 (2002)ADS CrossRef
    38.Shannon, R.D.: Acta Cryst. A 32, 751 (1976)CrossRef
    39.Vanitha, P.V., et al.: Chem. Mater. 12, 1666–1670 (2000)CrossRef
    40.Ri-Zhu, C.H.Y.: J. Mater Sci. 42, 660–668 (2007)ADS CrossRef
    41.Uthra, D., Singha, R.K.: Optoelectronic and advanced materials- Rapid communication 4(3), 322–32 (2010)
    42.Panwar, N., Sen, V., Pandya, D.K., Agarwal, S.K.: J. Alloys Compd. 456, 479–484 (2008)CrossRef
    43.Li, Z.Q., et al.: J. Magn. Magn. Mater. 284, 133–139 (2004)
    44.Hwang, H.Y., Cheong, S.W., Ong, N.P., Batlogg, B.: Phys. Rev. Lett. 77, 2041–2044 (1996)ADS CrossRef
    45.Xiong, C.S., et al.: J. Alloys Compd. 474, 316–320 (2009)CrossRef
    46.Venkataiah, G., Huang, J.C.A., Reddy, P.V.: J. Magn. Magn. Mater. 322, 417–423 (2010)ADS CrossRef
    47.Lalitha, G., Reddy, P.V.: J. Alloys Compd. 494, 476–482 (2010)CrossRef
    48.Shaikh, M. W., Varshney, D.: Mater. Chem. Phys 134, 886–898 (2012)CrossRef
    49.Mott, N.F., Davis, E.A. Clarendon, Oxford (1971)
    50.Emin, D., Holstein, T.: Ann. Phys. 53, 439 (1969)ADS CrossRef
  • 作者单位:N. Ibrahim (1)
    A. K. Yahya (1)

    1. Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Superconductivity, Superfluidity and Quantum Fluids
    Magnetism and Magnetic Materials
    Condensed Matter
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1557-1947
文摘
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ∼98 K (x = 0.1) to ∼122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ∼121 K (x = 0.1) to ∼170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ∼170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g −electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700