Proton conduction and hydrogen diffusion in olivine: an attempt to reconcile laboratory and field observations and implications for the role of grain boundary diffusion in enhancing conductivity
详细信息    查看全文
  • 作者:Alan G. Jones
  • 关键词:Electrical conductivity ; Hydrogen diffusion ; Grain boundary ; Olivine ; Pyroxene ; Lithosphere
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:43
  • 期:4
  • 页码:237-265
  • 全文大小:4,394 KB
  • 参考文献:Ahrens TJ (1989) Planetary origins—water storage in the mantle. Nature 342:122–123. doi:10.​1038/​342122a0 CrossRef
    Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 89:4059–4071. doi:10.​1029/​JB089iB06p04059 CrossRef
    AveLallemant HG, Mercier JCC, Carter NL, Ross JV (1980) Rheology of the upper mantle—inferences from peridotite xenoliths. Tectonophysics 70:85–113. doi:10.​1016/​0040-1951(80)90022-0 CrossRef
    Bai Q, Kohlstedt DL (1992) Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357:672–674CrossRef
    Bali E, Bolfan-Casanova N, Koga KT (2008) Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet Sci Lett 268:354–363. doi:10.​1016/​j.​epsl.​2008.​01.​035 CrossRef
    Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials. Wiley, HobokenCrossRef
    Baptiste V, Tommasi A, Vauchez A, Demouchy S, Rudnick RL (2015) Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: constraints from mantle xenoliths from the North tanzanian divergence of the East African Rift. Tectonophysics 639:34–55. doi:10.​1016/​j.​tecto.​2014.​11.​011 CrossRef
    Behr WM, Hirth G (2014) Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth Planet Sci Lett 393:60–72. doi:10.​1016/​j.​epsl.​2014.​02.​039 CrossRef
    Bell DR, Rossman GR (1992) Water in earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397CrossRef
    Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res Solid Earth. doi:10.​1029/​2001jb000679
    Beran A, Zemann J (1969) Über (OH)-Gruppen in olivin Anzeiger—Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse 106:73–74
    Berry AJ, Hermann J, O’Neill HSC, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33:869–872. doi:10.​1130/​g21759.​1 CrossRef
    Berry AJ, O’Neill HSC, Hermann J, Scott DR (2007) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261:134–142. doi:10.​1016/​j.​epsl.​2007.​06.​021 CrossRef
    Bolfan-Casanova N (2005) Water in the Earth’s mantle. Mineral Mag 69:229–257. doi:10.​1180/​0026461056930248​ CrossRef
    Brady JB, Cherniak DJ (2010) Diffusion in minerals: An overview of published experimental diffusion data. In: Zhang YX, Cherniak DJ (eds) Diffusion in minerals and melts, vol 72. Reviews in mineralogy and geochemistry. Mineralogical society of America, Chantilly, VA 20151-1110, United States pp 899–920. doi:10.​2138/​rmg.​2010.​72.​20
    Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. In: Diffusion in minerals and melts, vol 72. Reviews in mineralogy and geochemistry. pp 603–639. doi:10.​2138/​rmg.​2010.​72.​13
    Chu X, Korenaga J (2012) Olivine rheology, shear stress, and grain growth in the lithospheric mantle: geological constraints from the Kaapvaal craton. Earth Planet Sci Lett 333:52–62. doi:10.​1016/​j.​epsl.​2012.​04.​019 CrossRef
    Dai L, Karato S-I (2009) Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett 287:277–283. doi:10.​1016/​j.​epsl.​2009.​08.​012 CrossRef
    Dai L, Karato S (2014a) High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet Sci Lett 408:79–86. doi:10.​1016/​j.​eps1.​2014.​10.​003 CrossRef
    Dai L, Karato S-I (2014b) The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Phys Earth Planet Inter 232:51–56CrossRef
    Dai L, Karato S-I (2014c) Influence of oxygen fugacity on the electrical conductivity of hydrous olivine: implications for the mechanism of conduction. Phys Earth Planet Inter 232:57–60CrossRef
    Demouchy S (2010a) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295:305–313. doi:10.​1016/​j.​epsl.​2010.​04.​019 CrossRef
    Demouchy S (2010b) Hydrogen diffusion in spinel grain boundaries and consequences for chemical homogenization in hydrous peridotite. Contrib Mineral Petrol 160:887–898. doi:10.​1007/​s00410-010-0512-4 CrossRef
    Demouchy S (2012) Erratum to “Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in Earth’s mantle” [Earth Planet. Sci. Lett. 295 (2010) 305–313] Earth Planet Sci Lett 351:355–355
    Demouchy S, Bolfan-Casanova N (2016) Distribution and Transport of Hydrogen in the Lithospheric Mantle: a review. Lithos 240–243:402–425
    Demouchy S, Mackwell S (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30:486–494. doi:10.​1007/​s00269-003-0342-2 CrossRef
    Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355. doi:10.​1007/​s00269-006-0081-2 CrossRef
    Du Frane WL, Tyburczy JA (2012) Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity. Geochem Geophys Geosyst. doi:10.​1029/​2011gc003895
    Duba A (1976) Are laboratory electrical conductivity data relevant to the Earth? Acta Geodaet Geophys et Montanist Acad Sci Hung 11:485–496
    Duba A, Constable S (1993) The electrical-conductivity of lherzolite. J Geophys Res Solid Earth 98:11885–11899CrossRef
    Duba A, Nicholls IA (1973) Influence of oxidation state on electrical conductivity of olivine. Earth Planet Sci Lett 18:59–64CrossRef
    Farver JR (2010) Oxygen and hydrogen diffusion in minerals. In: Zhang YX, Cherniak DJ (eds) Diffusion in minerals and melts, vol 72. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, VA 20151-1110, United States, pp 447–507. doi:10.​2138/​rmg.​2010.​72.​10
    Farver JR, Yund RA, Rubie DC (1994) Magnesium grain-boundary diffusion in forsterite aggregates at 1000–1300 C and 0.1 MPa to 10 GPa. J Geophys Res Solid Earth 99:19809–19819. doi:10.​1029/​94jb01250 CrossRef
    Ferot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349:218–230. doi:10.​1016/​j.​epsl.​2012.​06.​022 CrossRef
    Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res Solid Earth. doi:10.​1029/​2011jb008544
    Fyfe WS (1970) Lattice energies, phase transformations and volatiles in the mantle. Phys Earth Planet Inter 3:196–200CrossRef
    Gardes E, Gaillard F, Tarits P (2015) Toward a unified olivine electrical conductivity law. Geochem Geophys Geosyst. doi:10.​1002/​2014GC005496
    Grant KJ, Kohn SC, Brooker RA (2007) The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite-forsterite-H(2)O. Earth Planet Sci Lett 260:227–241. doi:10.​1016/​j.​epsl.​2007.​05.​032 CrossRef
    Green DH (1973) Experimental melting studies on a model upper mantle composition at high-pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53. doi:10.​1016/​0012-821x(73)90176-3 CrossRef
    Green DH, Hibberson WO, Kovacs I, Rosenthal A (2010) Water and its influence on the lithosphere-asthenosphere boundary. Nature 467:448–451CrossRef
    Green DH, Hibberson WO, Kovacs I, Rosenthal A (2011) Water and its influence on the lithosphere-asthenosphere boundary. Nature 472:504CrossRef
    Green DH, Hibberson WO, Rosenthal A, Kovacs I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55:2067–2096. doi:10.​1093/​petrology/​egu050 CrossRef
    Hilchie L, Fedortchouk Y, Matveev S, Kopylova MG (2014) The origin of high hydrogen content in kimberlitic olivine: evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths. Lithos 202:429–441. doi:10.​1016/​j.​lithos.​2014.​06.​010 CrossRef
    Hilt O, Siebbeles LDA (1998) Time and frequency dependent charge carrier mobility on one-dimensional chains with energetic disorder for polaron and Miller-Abrahams type hopping. Chem Phys 229:257–263. doi:10.​1016/​s0301-0104(98)00037-8 CrossRef
    Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71:1266–1280. doi:10.​1016/​j.​gca.​2006.​11.​019 CrossRef
    Hiraga T, Kohlstedt DL (2009) Systematic distribution of incompatible elements in mantle peridotite: importance of intra- and inter-granular melt-like components. Contrib Mineral Petrol 158:149–167. doi:10.​1007/​s00410-009-0375-8 CrossRef
    Hirschmann M, Kohlstedt DL (2012a) Water in Earth’s mantle. Phys Today 65:40–45CrossRef
    Hirschmann MM, Kohlstedt D (2012b) Water in Earth’s mantle. Phys Today 65:40–45CrossRef
    Hirth G (2006) Geophysics—protons lead the charge. Nature 443:927–928. doi:10.​1038/​nature05208 CrossRef
    Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper-mantle 2: deformation in the dislocation creep regime. J Geophys Res Solid Earth 100:15441–15449. doi:10.​1029/​95jb01292 CrossRef
    Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108. doi:10.​1016/​0012-821x(96)00154-9 CrossRef
    Hirth G, Kohlstedt D (2003) Rheology of the Upper Mantle and the mantle wedge: a view from the experimentalists. In: Inside the subduction factory, vol 138. Geophysical monograph. American Geophysical Union, Washington, pp 83–105
    Hoffman RE, Turnbull D (1951) Lattice and grain boundary self-diffusion in silver. J Appl Phys 22:634–639. doi:10.​1063/​1.​1700021 CrossRef
    Huang XG, Xu YS, Karato S-I (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749. doi:10.​1038/​nature03426 CrossRef
    Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Water in Nominally Anhydrous Minerals 62:291–320. doi:10.​2138/​rmg.​2006.​62.​13
    Jones AG (2014a) Compensation of the Meyer-Neldel compensation law for H diffusion in minerals. Geochem Geophys Geosyst 15:1–16. doi:10.​1002/​2014GC005261 CrossRef
    Jones AG (2014b) Reconciling different equations for proton conduction using the Meyer-Neldel compensation rule. Geochem Geophys Geosyst 15:337–349. doi:10.​1002/​2013GC004911 CrossRef
    Jones AG, Evans RL, Eaton DW (2009) Velocity-conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109:131–143. doi:10.​1016/​j.​lithos.​2008.​10.​014 CrossRef
    Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst. doi:10.​1029/​2012gc004055
    Jung H, Karato S-I (2001a) Effects of water on dynamically recrystallized grain-size of olivine. J Struct Geol 23:1337–1344. doi:10.​1016/​s0191-8141(01)00005-0 CrossRef
    Jung H, Karato S-I (2001b) Water-induced fabric transitions in olivine. cience 293:1460–1463
    Karato S-I (1990) The role of hydrogen in the electrical-conductivity of the upper mantle. Nature 347:272–273. doi:10.​1038/​347272a0 CrossRef
    Karato S-I (2006) Remote sensing of hydrogen in Earth’s mantle. In: Keppler H, Smyth JR (eds) Water in Nominally Anhydrous Minerals, vol 62. Reviews in mineralogy and geochemistry. pp 343–375. doi:10.​2138/​rmg.​2006.​62.​15
    Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423. doi:10.​1016/​j.​epsl.​2010.​11.​038 CrossRef
    Karato S-I (2013) Theory of isotope diffusion in a material with multiple species and its implications for hydrogen-enhanced electrical conductivity in olivine. Phys Earth Planet Inter 219:49–54CrossRef
    Karato S-I (2015) Some notes on hydrogen-related point defects and their role in the isotope exchange and electrical conductivity in olivine. Phys Earth Planet Inter 248:94–98
    Karato S-I, Dai L (2009) Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al. Phys Earth Planet Inter 174:19–21. doi:10.​1016/​j.​pepi.​2009.​01.​011 CrossRef
    Karato S-I, Wang DJ (2013) Electrical conductivity of minerals and rocks. Wiley, HobokenCrossRef
    Karato S-I, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778CrossRef
    Katayama I, Korenaga J (2011) Is the African cratonic lithosphere wet or dry? In: Beccaluva L, Bianchini G, Wilson M (eds) Volcanism and Evolution of the African Lithosphere, vol 478. Geological Society of America Special Papers. pp 249-256. doi:10.​1130/​2011.​2478(13 )
    Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chemie-Int J Res Phys Chem Chem Phys 207:147–162
    Kohlstedt DL, Mackwell SJ (1999) Solubility and diffusion of ‘water’ in silicate minerals. In: Microscopic properties and processes in minerals, vol 543. Nato advanced science institutes series, series C, mathematical and physical sciences. pp 539–559
    Kovacs I, Hermann J, O’Neill HSC, Gerald JF, Sambridge M, Horvath G (2008) Quantitative absorbance spectroscopy with unpolarized light: part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Miner 93:765–778. doi:10.​2138/​am.​2008.​2656 CrossRef
    Kovacs I, O’Neill HSC, Hermann J, Hauri EH (2010) Site-specific infrared O-H absorption coefficients for water substitution into olivine. Am Miner 95:292–299. doi:10.​2138/​am.​2010.​3313 CrossRef
    Kovacs I, Green DH, Rosenthal A, Hermann J, O’Neill HS, Hibberson WO, Udvardi B (2012) An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus. J Petrol 53:2067–2093. doi:10.​1093/​petrology/​egs044 CrossRef
    Libowitzky E, Rossman GR (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Phys Chem Miner 23:319–327CrossRef
    Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine—implications for water in the mantle. J Geophys Res Solid Earth Planets 95:5079–5088. doi:10.​1029/​JB095iB04p05079 CrossRef
    Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Inter 174:10–18. doi:10.​1016/​j.​pepi.​2008.​06.​001 CrossRef
    Martin RF, Donnay G (1972) Hydroxyl in the mantle. Am Miner 57:554–570
    Mei S, Kohlstedt DL (2000a) Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res Solid Earth 105:21457–21469. doi:10.​1029/​2000jb900179 CrossRef
    Mei S, Kohlstedt DL (2000b) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res Solid Earth 105:21471–21481. doi:10.​1029/​2000jb900180 CrossRef
    Michael PJ (1988) The concentration, behaviour and storage of H2O in the sub-oceanic upper mantle: implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566CrossRef
    Murch GE (1983) The exact Nernst–Einstein equations and the interpretation of cross phenomenological coefficients in unary, binary, and ambipolar systems. Radiat Eff Defects Solids 73:299–305. doi:10.​1080/​0033757830822068​8 CrossRef
    Naif S, Key K, Constable S, Evans RL (2013) Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature 495:356–359. doi:10.​1038/​nature11939 CrossRef
    Ohuchi T et al (2015) In situ observation of crystallographic preferred orientation of deforming olivine at high pressure and high temperature. Phys Earth Planet Inter 243:1–21. doi:10.​1016/​j.​pepi.​2015.​04.​004 CrossRef
    Padrón-Navarta JA, Hermann J, O’Neill HSC (2014) Site-specific hydrogen diffusion rates in forsterite. Earth Planet Sci Lett 392:100–112. doi:10.​1016/​j.​epsl.​2014.​01.​055 CrossRef
    Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467:78–81. doi:10.​1038/​nature09317 CrossRef
    Peslier AH, Bizimis M, Matney M (2015) Water disequilibrium in olivines from Hawaiian peridotites: recent metasomatism, H diffusion and magma ascent rates. Geochim Cosmochim Acta 154:98–117. doi:10.​1016/​j.​gca.​2015.​01.​030 CrossRef
    Poe BT, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103–111. doi:10.​1016/​j.​pepi.​2010.​05.​003 CrossRef
    Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35:41–84. doi:10.​1007/​s10712-013-9226-2 CrossRef
    Sambridge M, Gerald JF, Kovacs I, O’Neill HSC, Hermann J (2008) Quantitative absorbance spectroscopy with unpolarized light: part I. Physical and mathematical development. Am Miner 93:751–764CrossRef
    Schmadicke E, Gose J, Witt-Eickschen G, Bratz H (2013) Olivine from spinel peridotite xenoliths: Hydroxyl incorporation and mineral composition. Am Miner 98:1870–1880. doi:10.​2138/​am.​2013.​4440 CrossRef
    Schmädicke E, Okrusch M, Rupprecht-Gutowski P, Will TM (2011) Garnet pyroxenite, eclogite and alkremite xenoliths from the off-craton Gibeon Kimberlite Field, Namibia: a window into the upper mantle of the Rehoboth Terrane. Precambrian Res 19:1–17. doi:10.​1016/​j.​precamres.​2011.​07.​010 CrossRef
    Stalder R, Skogby H (2003) Hydrogen diffusion in natural and synthetic orthopyroxene. Phys Chem Miner 30:12–19. doi:10.​1007/​s00269-002-0285-z CrossRef
    Sundvall R, Skogby H, Stalder R (2009) Hydrogen diffusion in synthetic Fe-free diopside. Eur J Mineral 21:963–970. doi:10.​1127/​0935-1221/​2009/​0021-1971 CrossRef
    ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res Solid Earth 109:9. doi:10.​1029/​2003JB002799
    Waff HS (1974) Theoretical considerations of electrical-conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010CrossRef
    Walker AM, Hermann J, Berry AJ, O’Neill HS (2007) Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism. J Geophys Res Solid Earth. doi:10.​1029/​2006jb004620
    Wang Q (2010) A review of water contents and ductile deformation mechanisms of olivine Implications for the lithosphere-asthenosphere boundary of continents. Lithos 120:30–41. doi:10.​1016/​j.​lithos.​2010.​05.​010 CrossRef
    Wang DJ, Mookherjee M, Xu YS, Karato S-I (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980CrossRef
    Wang DJ, Li HP, Yi L, Shi BP (2008) The electrical conductivity of upper-mantle rocks: water content in the upper mantle. Phys Chem Miner 35:157–162. doi:10.​1007/​s00269-007-0207-1 CrossRef
    Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253:307–327. doi:10.​1016/​j.​epsl.​2006.​11.​015 CrossRef
    Withers AC (2013) On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing species in birefringent crystals. Am Miner 98:689–697. doi:10.​2138/​am.​2013.​4316 CrossRef
    Yang XZ (2012) Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett 317:241–250. doi:10.​1016/​j.​epsl.​2011.​11.​011 CrossRef
    Yang XZ, Keppler H, McCammon C, Ni HW, Xia QK, Fan QC (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res Solid Earth. doi:10.​1029/​2010jb008010
    Yang XZ, Keppler H, McCammon C, Ni HW (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48. doi:10.​1007/​s00410-011-0657-9 CrossRef
    Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206. doi:10.​1007/​s10712-009-9084-0 CrossRef
    Yoshino T, Katsura T (2012) Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet Sci Lett 337:56–67. doi:10.​1016/​j.​epsl.​2012.​05.​023 CrossRef
    Yoshino T, Katsura I (2013) Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Ann Rev Earth Planet Sci 41:605–628. doi:10.​1146/​annurev-earth-050212-124022 CrossRef
    Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976. doi:10.​1038/​nature05223 CrossRef
    Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451:326–329. doi:10.​1038/​nature06427 CrossRef
    Yoshino T, Katsura T et al (2009a) Reply to Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake discussion. Phys Earth Planet Inter 174:22–23. doi:10.​1016/​j.​pepi.​2009.​01.​012 CrossRef
    Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009b) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett 288:291–300. doi:10.​1016/​j.​epsl.​2009.​09.​032 CrossRef
    Yurimoto H, Morioka M, Nagasawa H (1992) Oxygen self-diffusion along high diffusivity paths in forsterite. Geochem J 26:181–188CrossRef
    Zhang YX (2010) Diffusion in minerals and melts theoretical background. In: Diffusion in minerals and melts, vol 72. Reviews in mineralogy and geochemistry. pp 5–57. doi:10.​2138/​rmg.​2010.​72.​2
    Zhang YX, Cherniak DJ (2010) Diffusion in minerals and melts introduction. In: Diffusion in minerals and melts, vol 72. Reviews in mineralogy and geochemistry. pp 1–4. doi:10.​2138/​rmg.​2010.​72.​1
    Zhang BH, Shan SM (2015) Application of the cB Omega model to the calculation of diffusion parameters of Si in silicates. Geochem Geophys Geosyst 16:705–718. doi:10.​1002/​2014gc005551 CrossRef
    Zhao ZF, Zheng YF (2007) Diffusion compensation for argon, hydrogen, lead, and strontium in minerals: empirical relationships to crystal chemistry. Am Miner 92:289–308. doi:10.​2138/​am.​2007.​2127 CrossRef
  • 作者单位:Alan G. Jones (1) (2)

    1. Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
    2. Complete MT Solutions, 5345 McLean Crescent, Manotick, Ottawa, ON, K4M 1E3, Canada
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Crystallography
    Geochemistry
    Mineral Resources
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2021
文摘
Proton conduction in olivine is directly related to the diffusion rate of hydrogen by the Nernst–Einstein equation, but prior attempts to use this relationship have always invoked additional terms to try to reconcile laboratory measurements of proton conduction and hydrogen diffusion data. New diffusion experiments on olivine demonstrate that lattice diffusion associated with vacancies is indeed highly dependent on the defect site where hydrogen is bonded, but from none of the sites is diffusion fast enough to explain the observed laboratory proton conduction experiments. Hydrogen diffusion associated with polarons (redox-exchange) is significantly faster but still cannot explain the low activation energy typical of electrical conductivity measurements. A process of bulk diffusion, which combines lattice diffusion (either associated with redox-exchange or vacancies) with the far faster grain boundary diffusion, explains the laboratory results, but does not explain the field observations with an average grain size of 0.5–2 cm at 100 km below the Jagersfontein kimberlite field on the Kaapvaal craton. Either conduction is dominantly along well-interconnected grain boundaries of very fine-grained (0.01 mm) damp (80 wt ppm) olivine grains or fine-grained (0.05 mm), wet (400 wt ppm) pyroxene grains, or another conduction mechanism must be primarily responsible for the field observations. If diffusion is the correct explanation, the conductivity below the Gibeon kimberlite field in Namibia is too high to be explained by increased thermal state alone of a diffusion process, even for such fine-grained pyroxenes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700