Structural, electrical and electrochemical properties of polyacrylonitrile-ammonium hexaflurophosphate polymer electrolyte system
详细信息    查看全文
  • 作者:S. Karthikeyan ; S. Sikkanthar ; S. Selvasekarapandian…
  • 关键词:PAN ; Ammonium hexafluorophosphate ; Proton conduction ; Polymer electrolyte ; Electrochemical impedance spectroscopy ; Dielectric Spectra ; Proton battery
  • 刊名:Journal of Polymer Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:3
  • 全文大小:865 KB
  • 参考文献:1.Shriver DF, Bruce PG (1995) In: Bruce PG (ed) Solid-state electrochemistry. Cambridge University Press, Cambridge
    2.Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197CrossRef
    3.Meng C, Liu C, Chen L, Hu C, Fan S (2010) Highly flexible and all-solid-state paper like polymer super capacitors. Nano Lett 10:4025–4403CrossRef
    4.Hu Z, Chen S (2015) In: Fang J, Qiao J, Wilkinson DP, Zhang J (eds) Electrochemical polymer electrolyte membranes. CRC Press, New York
    5.Hashmi SA, Ajay K, Maurya KK, Chandra S (1990) Proton-conducting polymer electrolyte I: the polyethylene oxide + NH4CIO4 system. J Phys D Appl Phys 23:1307–1314CrossRef
    6.Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589CrossRef
    7.Chen H-W, Lin T-P, Chang F-C (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288CrossRef
    8.Hema M, Selvasekerapandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Physica B 403:2740–2747CrossRef
    9.Shen YJ, Jaipal Reddy M, Chu PP (2004) Porous PVDF with LiClO4 complex as ‘solid’ and ‘wet’ polymer electrolyte. Solid State Ionics 175:747–750CrossRef
    10.Raghavan P, Manuel J, Zhao X, Kim D-S, Ahn J-H, Nah C (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749CrossRef
    11.Rika, Ahmad A, Rahman MYA, Salleh MM (2009) Preparation and characterization of PAN based solid polymeric electrolyte for dye-sensitized solar cells. Physica B 404:1359–1361CrossRef
    12.Abraham KM, Choe HS, Pasquariello DM (1998) Polyacrylonitrile electrolyte-based Li ion batteries. Electrochim Acta 43(16-17):2399–2412CrossRef
    13.Hakkak F, Rafizadeh M, Sarabi AA, Yousefi M (2014) Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics. doi:10.​1007/​s11581-014-1363-1
    14.Y-S Liu, G-B Pan (2011) In: A Kokorin (ed) Ionic liquids: applications and perspectives. InTech Publisher, Rijeka
    15.Van Thanh D, Li LJ, Chu CW, Yen PJ, Wei KH (2014) Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets. RSC Adv 4:6946–6949CrossRef
    16.Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkanthar S, Sanjeeviraja C (2014) AC impedance studies on proton conducting PAN-NH4SCN polymer electrolytes. Ionics 20(10):1391–1398CrossRef
    17.Sikkanthar S, Karthikeyan S, Selvasekarapandian S, VinothPandi D, Nithya S, Sanjeeviraja C (2015) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem 19(4):987–999CrossRef
    18.Sikkanthar S, Karthikeyan S, Rajeswari N, Selvasekarapandian S, Sanjeeviraja C (2013) In: Kawamura J (ed) Solid state ionics: ionics for sustainable world - Proceedings of the 13th Asian Conference. World Scientific Publishing Co. Pte. Ltd, Singapore
    19.Sawai D, Miyamoto M, Kanamoto T, Ito MJ (2000) Lamellar thickening in nascent poly (acrylonitrile) upon annealing. J Polym Sci B Polym Phys 38:2571–2579CrossRef
    20.Gubanova GN, Sukhanova TE, Grigoriev AI, Sazanov YN, Novoselova AV, Gribanov AV, Fiodorova GN, Kutin AA (2008) In: Baranowski B, Zaginaichenko S, Schur D, Skorokhod V, Veziroglu A (eds) Carbon nanomaterials in clean energy hydrogen systems. Springer, The Netherlands
    21.Agrawal SL, Shukla PK (1997) Dielectric studies on PVA- NH4SCN complexes. Phys Status Solidi A 163:247–254CrossRef
    22.Sridevi D, Rajendran KV (2009) Synthesis and optical characteristics of ZnO nano crystals. Bull Mater Sci 32(2):165–168CrossRef
    23.Azaroff VL (1968) Elements of X-ray crystallography. McGraw Hill, New York
    24.Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376CrossRef
    25.Patel SK, Patel RB, Awadhia A, Chand N, Agrawal SL (2007) Role of polyvinyl alcohol in the conductivity behaviour of polyethylene glycol-based composite gel electrolytes. Pramana 69:467–475CrossRef
    26.Ebrasu D, Stamatin I, Vaseashta A (2008) Proton conducting polymers as electrolyte for fuel cells. NANO 3(5):381–386CrossRef
    27.Bashir Z, Church SP, Price DM (1993) The formation of polymer-solvent complexes of polyacrylonitrile from organic solvents containing carbonyl groups. Acta Polym 44:211–218CrossRef
    28.Liang CY, Krimm S (1958) Infrared spectra of high polymers. VII. Polyacrylonitrile. J Polym Sci 31:513–522CrossRef
    29.Siesler HW (1977) Polymer-solvent interaction: the IR-dichroic behaviour of DMF residues in drawn films of polyacrylonitrile. Colloid Polym Sci 255:321–326CrossRef
    30.Tadokoro H, Murahashi S, Yamadera R, Kamei T (1963) Infrared absorption spectra of polyacrylonitrile and deuterated polyacrylonitriles. J Polym Sci A 1:3029–3042
    31.Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ionics 178:439–445CrossRef
    32.Torell LM, Schantz S (1989) In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews-2. Elsevier, London
    33.Helan Flora X, Ulaganathan M, Rajendran S (2012) Influence of Lithium salt concentration on PAN -PMMA blend polymer electrolytes. Int J Electrochem Sci 7:7451–7462
    34.Mansfeld F, Huet F, Mattos OR (eds) (2001) New trends in Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Noise Analysis (ENA). The Electrochemical Society, Pennington
    35.Winie T, Arof AK (2014) In: Chin Han C, Chin Hua C, Sabu T (eds) Physical Chemistry of Macromolecules: Macro to Nanoscales. Apple Academic Press, Toronto
    36.Boukamp BA (1986) A package for impedance/admittance analysis. Solid State Ionics 18–19:136–140CrossRef
    37.John R. S (2005) In: Robert B (ed) Corrosion tests and standards: application and interpretation. ASTM International, West Conshohocken
    38.Selvasekarapandian S, Savitha T, Malathi J, Mangalam R, Ramya SS (2009) Synthesis and characterization of nanosized materials for Lithium rechargeable batteries. In: Srivastava A, Ipsita R (eds) Bio-nano-geo sciences: the future challenge. Ane Books Pvt Ltd, New Delhi
    39.Jonscher AK (1981) A new understanding of the dielectric relaxation of solids. J Mater Sci 16:2037–2060CrossRef
    40.Zhang HP, Zhang P, Wu YP, Wu HQ (2007) In: Dragan ES (ed) New trends in ionic (Co)polymers and hybrids. Nova Publishers, New York
    41.Mark HF (2014) Encyclopedia of polymer science and technology. John Wiley & Sons, Hoboken
    42.Mishra R, Rao KJ (1998) Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106:113–127CrossRef
    43.Campbell JA, Goodwin AA, Simon GP (2001) Dielectric relaxation studies of miscible polycarbonate/polyester blends. Polymer 42:4731–4741CrossRef
    44.Kim JS (2001) Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3133CrossRef
    45.Singh KP, Gupta PN (1998) Study of dielectric relaxation in polymer electrolytes. Eur Polym J 34(7):1023–1029CrossRef
    46.Wagner JB, Wagner C (1957) Determination of the standard free energy of formation of cuprous sulfide at 300 °C. J Electrochem Soc 104:509–511CrossRef
    47.Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15CrossRef
    48.Baral AK, Narayanan S, Ramezanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Phys Chem Chem Phys 16(23):11356–11365CrossRef
    49.Richert R, Wagner H (1998) The dielectric modulus: relaxation versus retardation. Solid State Ionics 105(1–4):167–173CrossRef
    50.Ramesh S, Chiam-Wen L, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid1-butyl-3-methylimidazolium hexa fluorophosphates. J Non-Cryst Solids 357:3654–3660CrossRef
    51.Winie T, Arof AK (2006) Transport properties of hexanoyl chitosan-based gel electrolyte. Ionics 12:149–152CrossRef
    52.Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA-NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn Suppl A 79:163–168CrossRef
    53.Subba Reddy C v, Sharma AK, Narasimha Rao VVR (2003) Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO3) electrolyte. J Power Sources 114:338–345CrossRef
  • 作者单位:S. Karthikeyan (1)
    S. Sikkanthar (2) (3) (4)
    S. Selvasekarapandian (4)
    D. Arunkumar (5)
    H. Nithya (5)
    J. Kawamura (5)

    1. Department of Physics, Madras Christian College, East Tambaram, Chennai, 600059, India
    2. PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, Tamilnadu, India
    3. Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, India
    4. Materials Research Centre, Coimbatore, Tamilnadu, India
    5. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1572-8935
文摘
Polyacrylonitrile (PAN) based polymer electrolyte membranes complexed with Ammonium hexafluorophosphate (NH4PF6) with different molar concentration are prepared by solution casting method. Increase in the amorphous nature by the addition of Ammonium salt and the formation of polymer-salt complex are confirmed by X ray diffraction studies and infrared spectroscopy respectively. The glass transition temperature is measured for all membranes and it showed a lowest value for the PAN complexed with 20 mol% of NH4PF6. Electrical properties are studied by AC impedance spectroscopy. An ionic conductivity of the order of 10−3 Scm−1 is obtained for the 80 PAN / 20 NH4PF6 polymer electrolyte. Conductivity, dielectric and modulus spectra from the impedance data are analysed to understand the ionic transport mechanism. Transference number measurement is done to study the ionic contribution to the charge transport. A proton battery with the configuration, Zn+ ZnSO4. 7H2O /80 PAN / 20 NH4PF6 / PbO2 +V2O5 has been constructed and its discharge characteristics are studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700