Estimating Thermal Response Test Coefficients: Choosing Coordinate Space of The Random Function
详细信息    查看全文
  • 作者:Roberto Bruno ; Francesco Tinti ; Sara Focaccia
  • 关键词:Thermal response test ; Random function ; Geothermal energy ; Pseudo ; variogram models ; Non ; linear transformation
  • 刊名:Mathematical Geosciences
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:48
  • 期:1
  • 页码:3-23
  • 全文大小:3,199 KB
  • 参考文献:Austin WA, Yavuzturk C (2000) Development of an in-situ system and analysis procedure for measuring ground thermal properties. ASHRAE Trans 106(1):365–379
    Beier RA, Smith MD (2003) Minimum duration of in-situ tests on vertical boreholes. ASHRAE Trans 109(2):475–486
    Boettcher S, Sibani P (2011) Aging in dense colloids as diffusion in the logarithm of time. J Phys Condens Matter 23:065103CrossRef
    Bruno R, Focaccia S, Tinti F (2011) Geostatistical modeling of a shallow geothermal reservoir for air conditioning of buildings. In: Proceeding of IAMG, Salzburg, pp 145–162
    Bruno R, Mercuri S, Tinti F, Witte H (2013) Probabilistic approach to TRT analysis: evaluation of groundwater flow effects and machine–borehole interaction. In: Proceedings of European geothermal congress, Pisa, Italy
    Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty, 2nd edn. Wiley, New York (ISBN: 978-0-470-18315-1)CrossRef
    Dieterich JH (1978) Time-dependent friction and the mechanics of stick-slip. Pageoph 116(4–5):790–806CrossRef
    Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26:675–700CrossRef
    Eklof C and Gehlin S (1996) TED–a mobile equipment for thermal response tests. Master’s thesis: 198E, Lulea University of Technology, Sweden
    Focaccia S, Bruno R, Tinti F (2013) A software tool for geostatistical analysis of thermal response test data: GA-TRT. Comput Geosci 59:163–170CrossRef
    Gaddum JH (1945) Lognormal distributions. Nature 156:463–466CrossRef
    IGSHPA (2013) Closed-loop/geothermal heat pump systems: design and installation standards. In: International ground source heat pump association. Oklahoma State University, Stillwater
    Lloyd CD (2010) Local models for spatial analysis. CRC Press, Taylor & Francis Group, London, p 352 (ISBN: 9781439829196)
    Lutkephol H, Xu F (2012) The role of the log transformation in forecasting economic variables. Empir Econ 42:619–638CrossRef
    Marcotte D, Pasquier P (2008) On the estimation of thermal resistance in borehole thermal conductivity test. Renew Energ 33(11):2407–2415CrossRef
    Mogensen P (1983) Fluid to duct wall heat transfer in duct system heat storages. In: Proceedings of the international conference on subsurface heat storage in theory and practice, appendix, Part II, Stockholm
    Mouri H (2013) Log-normal distribution from a process that is not multiplicative but is additive. Phys Rev E 88(4). doi:10.​1103/​PhysRevE.​88.​042124
    Mozyrska D, Torres DFM (2009) The natural logarithm on time scales. JDSGT 7(1):41–48
    Sanner B, Hellström G, Spitler J, Gehlin S (2005) Thermal response test–current status and world-wide application. In: Proceedings of world geothermal congress, Antalya, Turkey
    Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16(2):519–524CrossRef
    Tinti F, Focaccia S, Bruno R (2015) Thermal response test for shallow geothermal applications: a probabilistic analysis approach. Geotherm Energy 3(6). doi:10.​1186/​s40517-015-0025-5
    Witte HJL, van Gelder GJ, Spitler JD (2002) In situ measurement of ground thermal conductivity: a Dutch perspective. ASHRAE Trans 108(1):263–272
    Zhang C, Guo Z, Liu Y, Cong X, Peng D (2014) A review on thermal response test of ground-coupled heat pump systems. Renew Sust Energ Rev 40:851–867CrossRef
  • 作者单位:Roberto Bruno (1)
    Francesco Tinti (1)
    Sara Focaccia (1) (2)

    1. Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131, Bologna, Italy
    2. CERENA, Instituto Superior Técnico de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mathematical Applications in Geosciences
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
    Geotechnical Engineering
    Hydrogeology
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1874-8953
文摘
In shallow geothermal systems, the main equivalent underground thermal properties are commonly calculated with a thermal response test (TRT). This is a borehole heat exchanger production test where the temperature of a heat transfer fluid is recorded over time at constant power heat injection/extraction. The equivalent thermal parameters (thermal conductivity, heat capacity) are simply deduced from temperature data regression analysis that theoretically is a logarithmic function in the time domain, or else a linear function in the log-time domain. By interpreting the recorded temperatures as a regionalized variable whose drift is the regression function, in both cases the formal problem is a linear estimation of the mean. If the autocorrelation function (variogram, covariance) of residuals is known, coefficient variance can be directly deduced. Coefficient estimates are independent of the drift form adopted, and the residuals are the same in the same points. The random function is different in the time domain, however, and in the log-time domain. In fact, residual variograms are different due to the transformation of the coordinate space. This paper uses a TRT case study to examine the consequences of coordinate space transformation for a random function, namely its variogram. The specific question addressed is the choice of coordinate space and variogram.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700