25 Years of Self-organized Criticality: Space and Laboratory Plasmas
详细信息    查看全文
  • 作者:A. Surjalal Sharma ; Markus J. Aschwanden ; Norma B. Crosby…
  • 关键词:Self ; organized criticality ; Nonequilibrium systems ; Multiscale phenomena ; Turbulence ; Space plasmas ; Tokamaks
  • 刊名:Space Science Reviews
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:198
  • 期:1-4
  • 页码:167-216
  • 全文大小:2,572 KB
  • 参考文献:H.D. Abarbanel, R. Brown, J.J. Sidorovich, T.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331 (1993) ADS
    P.W. Anderson, More is different. Science 177, 393鈥?96 (1972) ADS
    P.W. Anderson, More and Different: Notes from a Thoughtful Curmudgeon (World Scientific, Singapore, 2011)
    V. Angelopoulos, F.V. Coroniti, C.F. Kennel, M.G. Kivelson, R.J. Walker, C.T. Russell, R.L. McPherron, E. Sanchez, C.I. Meng, W. Baumjohann, G.D. Reeves, R.D. Belian, N. Sato, E. Friis-Christensen, P.R. Sutcliffe, K. Yumoto, T. Harris, Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101(A3), 4967鈥?990 (1996) ADS
    V. Angelopoulos, T. Mukai, S. Kokubun, Evidence for intermittency in Earth鈥檚 plasma sheet and implications for self-organized criticality. Phys. Plasmas 6(11), 4161鈥?168 (1999) ADS
    K. Arzner, M. Scholer, R.A. Treumann, Percolation of charged particle orbits in two-dimensional irregular fields and its effect in the magnetospheric tail. J. Geophys. Res. Space Phys. 107(A4) (2002). doi:10.鈥?029/鈥?001JA000027
    M.J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system. Astron. Astrophys. 539(A2), 15 (2012)
    M.J. Aschwanden, Theoretical models of SOC systems, chap. 2, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013a), pp. 23鈥?2. http://鈥媤ww.鈥媜penacademicpres鈥媠.鈥媎e
    M.J. Aschwanden, SOC systems in astrophysics, chap. 13, in Proceedings Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013b), pp. 439鈥?83. http://鈥媤ww.鈥媜penacademicpres鈥媠.鈥媎e
    M.J. Aschwanden, J.M. McTiernan, Reconciliation of waiting time statistics of solar flares observed in hard X-rays. Astrophys. J. 717, 683鈥?92 (2010) ADS
    M.J. Aschwanden, N.B. Crosby, M. Dimitropoulou, M.K. Georgoulis, S. Hergarten, J. McAteer, A.V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A.S. Sharma, A. Strugarek, V. Uritsky, 25 years of self-organized criticality solar and astrophysics. Space Sci. Rev. 181(1鈥?), 1鈥?20 (2014). doi:10.鈥?007/鈥媠11214-014-0054-6
    P. Bak, C. Tang, Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94, 15635鈥?5637 (1989) ADS
    P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of \(1/f\) noise. Phys. Rev. Lett. 59(27), 381鈥?84 (1987) ADS MathSciNet
    D.N. Baker, A.J. Klimas, R.L. McPherron, J. Buchner, A nonlinear dynamical analogue model of geomagnetic activity. Geophys. Res. Lett. 17, 41 (1990) ADS
    D.N. Baker, T.I. Pulkkinen, J. B眉chner, A.J. Klimas, Substorms: A global instability of the magnetosphere-ionosphere system. J. Geophys. Res. Space Phys. 104, 14601鈥?4611 (1999) ADS
    R. Balecu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College Press, London, 1997)
    L.F. Bargatze, D.N. Baker, R.L. McPherron, E.W. Hones, Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res. 90, 6387鈥?394 (1985). doi:10.鈥?029/鈥婮A090iA07p06387 . ISSN: 0148-0227 ADS
    R. Basu, T. Jessen, V. Naulin, J.J. Rasmussen, Turbulent flux and the diffusion of passive tracers in electrostatic turbulence. Phys. Plasmas 10, 2696鈥?703 (2003) ADS
    S. Benkadda (ed.), Turbulent Transport in Fusion Plasmas. AIP Conf. Proc., vol. 1013 (AIP, Melville, 2008)
    H.L. Berk, B.N. Breizman, J. Fitzpatrick, M.S. Pekker, H.V. Wong, K.L. Wong, Nonlinear response of driven systems in weak turbulence theory. Phys. Plasmas 3(5), 1827鈥?838 (1996) ADS
    P. Beyer, S. Benkadda, X. Garbet, P.H. Diamond, Nondiffusive transport in tokamaks: Three-dimensional structure of bursts and the role of zonal flows. Phys. Rev. Lett. 85, 4892鈥?895 (2000) ADS
    J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106(A3), 3715鈥?719 (2001) ADS
    G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, A. Vulpiani, Power laws in solar flares: Self-organized criticality or turbulence. Phys. Rev. Lett. 83(2), 4662鈥?665 (1999) ADS
    J.E. Borovsky, The occurrence rate of magnetospheric-substorm onsets: Random and periodic substorms. J. Geophys. Res. 98(A3), 3807鈥?813 (1993) ADS
    W. Bristow, Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions. J. Geophys. Res. 113, CiteID:A11202 (2008)
    D.S. Broomhead, G.P. King, Extracting qualitative dynamics from experimental data. Physica D 20(2鈥?), 217鈥?36 (1986) ADS MathSciNet MATH
    R.M. Bryce, K.B. Sprague, Revisiting detrended fluctuation analysis. Sci. Rep. 2, 315 (2012). doi:10.鈥?038/鈥媠rep00315 ADS
    V.P. Budaev, N. Ohno, S. Masuzaki, T. Morisaki, A. Komori, S. Takamura, Extended self-similarity of intermittent turbulence in edge magnetized plasmas. Nucl. Fusion 48, 024014 (2008) ADS
    V.P. Budaev, S.P. Savin, L.M. Zelenyi, Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: Towards a quantitative definition of plasma transport features. Phys. Usp. 54, 875鈥?18 (2011) ADS
    A. Bunde, J.F. Eichner, J.W. Kantelhardt, S. Havlin, Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys. Rev. Lett. 94, 048701 (2005) ADS
    A. Carbone, G. Castellia, H.E. Stanley, Time-dependent Hurst exponent in financial time series. Physica A 344(1鈥?), 267鈥?71 (2004) ADS MathSciNet
    J.M. Carlson, J. Doyle, Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538鈥?545 (2002) ADS
    D. Carralero, I. Calvo, M. Shoji, B.A. Carreras, K. Ida, S. Ohdachi, S. Sakakibara, H. Yamada, C. Hidalgo, Influence of \(\beta\) on the self-similarity properties of LHD edge fluctuations. Plasma Phys. Control. Fusion 53, 095010 (2011) ADS
    B.A. Carreras, Progress in anomalous transport research in toroidal magnetic confinement devices. IEEE Trans. Plasma Sci. 25, 1281鈥?321 (1997) ADS
    B.A. Carreras, D.E. Newman, V.E. Lynch, P.H. Diamond, A model realization of self-organized criticality for plasma confinement. Phys. Plasmas 3, 2903 (1996) ADS
    B.A. Carreras, B. van Milligen, M.A. Pedrosa, R. Balb铆n, C. Hidalgo, D.E. Newman, E. S谩nchez, M. Frances, I. Garc铆a-Cort茅s, J. Bleuel, M. Endler, S. Davies, G.F. Matthews, Long-range time correlations in plasma edge turbulence. Phys. Rev. Lett. 80, 4438鈥?441 (1998) ADS
    B.A. Carreras, B. van Milligen, C. Hidalgo, R. Balbin, E. Sanchez, I. Garcia-Cortes, M.A. Pedrosa, J. Bleuel, M. Endler, Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge. Phys. Rev. Lett. 83, 3653鈥?656 (1999) ADS
    B.A. Carreras, V.E. Lynch, D.E. Newman, R. Balbin, Intermittency of plasma edge fluctuation data: Multifractal analysis. Phys. Plasmas 7, 3278 (2000) ADS
    B.A. Carreras, V.E. Lynch, G.M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096 (2001) ADS
    T.S. Chang, Low-dimensional behavior and symmetry breaking of stochastic systems near criticality鈥擟an these effects be observed in space and in the laboratory. IEEE Trans. Plasma Sci. 20(6), 691鈥?94 (1992) ADS
    T.S. Chang, Self-organized criticality, multi-fractal spectra, and intermittent merging of coherent structures in the magnetotail. Astrophys. Space Sci. 264, 303鈥?16 (1999a) ADS MATH
    T.S. Chang, Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail. Phys. Plasmas 6(11), 4137鈥?145 (1999b) ADS
    T.S. Chang, S.W.Y. Tam, C.C. Wu, G. Consolini, Complexity, forced and/or self-organized criticality and topological phase transitions in space plasmas. Space Sci. Rev. 107, 425鈥?45 (2003) ADS
    T.S. Chang, S.W.Y. Tam, C.C. Wu, Complexity induced anisotropic bimodal intermittent turbulence in space plasmas. Phys. Plasmas 11(4), 1287鈥?299 (2004) ADS
    S.C. Chapman, R.M. Nicol, Generalized similarity in finite range solar wind magnetohydrodynamic turbulence. Phys. Rev. Lett. 103(24), CiteID 241101 (2009)
    S.C. Chapman, N. Watkins, Avalanching and self-organised criticality, a paradigm for geomagnetic activity? Space Sci. Rev. 95, 293鈥?07 (2001) ADS
    S.C. Chapman, N.W. Watkins, Avalanching systems under intermediate driving rate. Plasma Phys. Control. Fusion 51, 124006 (2009) (9 pp.) ADS
    S.C. Chapman, N.W. Watkins, R.O. Dendy, P. Helander, G. Rowlands, A simple avalanche model as an analogue for magnetospheric activity. Geophys. Res. Lett. 25(13), 2397鈥?400 (1998) ADS
    S.C. Chapman, R.O. Dendy, G. Rowlands, A sandpile model with dual scaling for laboratory, space and astrophysical plasmas. Phys. Plasmas 6(11), 4169鈥?177 (1999) ADS
    S.C. Chapman, N. Watkins, G. Rowlands, Signatures of dual scaling regimes in a simple avalanche model for magnetospheric activity. J. Atmos. Sol.-Terr. Phys. 63, 1361鈥?370 (2001) ADS
    S.C. Chapman, G. Rowlands, N.W. Watkins, Macroscopic control parameter for avalanche models for bursty transport. Phys. Plasmas 16, 012303 (2009) ADS
    A.V. Chechkin, R. Metzler, V.Y. Gonchar, J. Klafter, L.V. Tanatarov, First passage and arrival times densities for Levy flights and the failure of the method of images. J. Phys. A 36, L537 (2003) ADS MathSciNet MATH
    L. Chen, Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks. Phys. Plasmas 1(5), 1519鈥?522 (1994) ADS
    J. Chen, Spatio-temporal dynamics of the magnetosphere during geospace storms, Ph.D. dissertation, University of Maryland, College Park (2007)
    J. Chen, A.S. Sharma, Modeling and prediction of magnetospheric dynamics during intense geospace storms. J. Geophys. Res. 111(A4), A04209 (2006) ADS
    C.X. Chen, R.A. Wolf, Interpretation of high-speed flows in the plasma sheet. J. Geophys. Res. 98, 21409 (1993) ADS
    L. Chen, F. Zonca, Physics of Alfv茅n waves and energetic particles in burning plasmas. Nucl. Fusion 47, S727鈥揝734 (2007) ADS
    L. Chen, F. Zonca, Physics of Alfv茅n waves and energetic particles in burning plasmas. Rev. Mod. Phys. (2015, accepted)
    J. Chen, A.S. Sharma, J. Edwards, X. Shao, Y. Kamide, Spatio-temporal dynamics of the magnetosphere during geospace storms: Mutual information analysis. J. Geophys. Res. 113, A05217 (2008). doi:10.鈥?029/鈥?007JA012310 ADS
    S.P. Christon, D.J. Williams, D.G. Mitchell, L.A. Frank, C.Y. Huang, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. J. Geophys. Res. Space Phys. 94, 13409鈥?3424 (1989) ADS
    G. Consolini, Sandpile cellular automata and magnetospheric dynamics, in Proc., Cosmic Physics in the Year 2000, vol. 58, ed. by S. Aiello, N. Iucci, G. Sironi, A. Treves, U. Villante (SIF, Bologna, Italy, 1997), pp. 123鈥?26
    G. Consolini, Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals 10, 275鈥?83 (2002)
    G. Consolini, T.S. Chang, Magnetic field topology and criticality in geotail dynamics: Relevance to substorm phenomena. Space Sci. Rev. 95, 309鈥?21 (2001) ADS
    G. Consolini, M. Kretzschmar, Thermodynamics of rare events and impulsive relaxation events in the magnetospheric substorm dynamics. Planet. Space Sci. 55(15), 2244鈥?250 (2007) ADS
    G. Consolini, M.F. Marcucci, M. Candidi, Multifractal structure of auroral electrojet index data. Phys. Rev. Lett. 76, 4082 (1996) ADS
    N.B. Crosby, M.J. Aschwanden, B.R. Dennis, Frequency distributions and correlations of solar X-ray flare parameters. Sol. Phys. 143, 275鈥?99 (1993) ADS
    N.B. Crosby, N.P. Meredith, A.J. Coates, R.H.A. Iles, Modelling the outer radiation belt as a complex system in a self-organised critical state. Nonlinear Process. Geophys. 12, 993鈥?001 (2005) ADS
    M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993) ADS
    P.G. de Gennes, Granular matter: A tentative view. Rev. Mod. Phys. 71, S374 (1999)
    D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006) ADS MathSciNet
    D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854鈥?864 (2004) ADS
    D. del-Castillo-Negrete, P. Mantica, V. Naulin, J.J. Rasmussen (JET EFDA contributors), Fractional diffusion models of nonlocal perturbative transport: Numerical results and application to JET experiments. Nucl. Fusion 48, 075009 (2008) (13 pp.) ADS
    R.O. Dendy, P. Helander, Sandpiles, silos and tokamak phenomenology: A brief review. Plasma Phys. Control. Fusion 39, 1947鈥?961 (1997) ADS
    D. Dhar, Theoretical studies of self-organized criticality. Physica A 369, 29鈥?0 (2006) ADS MathSciNet
    P.H. Diamond, T.S. Hahm, On the dynamics of turbulent transport near marginal stability. Phys. Plasmas 2, 3640鈥?649 (1995) ADS
    P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal flows in plasma鈥擜 review. Plasma Phys. Control. Fusion 47, R35鈥揜161 (2005) ADS
    G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, On the validity of the local diffusive paradigm in turbulent plasma transport. Phys. Rev. E 82, 025401(R) (2010) (4 pp.) ADS
    G. Dif-Pradalier, G. Hornung, Ph. Ghendrih, Y. Sarazin, F. Clairet, L. Vermare, P.H. Diamond, J. Abiteboul, T. Cartier-Michaud, C. Ehrlacher, D. Est猫ve, X. Garbet, V. Grandgirard, 脰.D. G眉rcan, P. Hennequin, Y. Kosuga, G. Latu, P. Maget, P. Morel, C. Norscini, R. Sabot, A. Storelli, Finding the elusive \(E\times B\) staircase in magnetized plasmas. Phys. Rev. Lett. 114, 085004 (2015) (4 pp.) ADS
    M. Dimitropoulou, H. Isliker, L. Vlahos, M.K. Georgoulis, Simulating flaring events in complex active regions driven by observed magnetograms. Astron. Astrophys. 529, A101 (2011) ADS
    D.A. D鈥橧ppolito, J.R. Myra, S.J. Zweben, Convective transport by intermittent blob-filaments: Comparison of theory and experiment. Phys. Plasmas 18, 060501 (2011) (48 pp.)
    J.M. Dixon, J.A. Tuszynski, P.A. Clarkson, From Nonlinearity to Coherence Universal Features of Nonlinear Behaviour in Many-Body Physics (Oxford University Press, London, 1999)
    G.Z. dos Santos Lima, K.C. Iarosz, A.M. Batista, I.L. Caldas, Z.O. Guimaraes-Filho, R.L. Viana, S.R. Lopes, I.C. Nascimento, Y.K. Kuznetsov, Self-organized criticality in MHD driven plasma edge turbulence. Phys. Lett. A 376, 753鈥?57 (2012) ADS MATH
    E.J. Doyle et al., ITER data basis: Chap. 2鈥擯lasma confinement and transport. Nucl. Fusion 47, S18 (2007) ADS
    D.G. Dritschel, M.E. McIntyre, Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855鈥?74 (2008) ADS
    G. Einaudi, M. Velli, The distribution of flares, statistics of magnetohydrodynamic turbulence and coronal heating. Phys. Plasmas 6(11), 4146鈥?153 (1999) ADS
    Z. Eisler, J. Kert茅sz, S.-H. Yook, A.-L. Barab谩si, Multiscaling and non-universality in fluctuations of driven complex systems. Europhys. Lett. 69(4), 664 (2005) ADS
    D.H. Fairfield, J. Jones, Variability of the tail lobe field strength. J. Geophys. Res. 101, 7785鈥?791 (1996) ADS
    M.E. Fisher, The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974) ADS
    H.C. Fogedby, Langevin-equations for continuous-time L茅vy flights. Phys. Rev. E 50, 1657鈥?660 (1994) ADS
    E.D. Fredrickson, R.E. Bell, D.S. Darrow, G.Y. Fu, N.N. Gorelenkov, B.P. LeBlanck, S.S. Medley, J.E. Menard, H. Park, A.L. Roquemore, W.W. Heidbrink, S.A. Sabbagh, D. Stutman, K. Tritz, N.A. Crocker, S. Kubota, W. Peebles, K.C. Lee, F.M. Levington, Collective fast ion instability-induced losses in national spherical tokamak experiment. Phys. Plasmas 13(5), 056109 (2006) ADS
    M.P. Freeman, N.W. Watkins, D.J. Riley, Power law distributions of burst duration and interburst interval in the solar wind: Turbulence of dissipative self-organized criticality? Phys. Rev. E 62(6), 8794鈥?797 (2000a) ADS
    M.P. Freeman, N.W. Watkins, D.J. Riley, Evidence for a solar wind origin of the power law burst lifetime distribution of the AE indices. Geophys. Res. Lett. 27, 1087鈥?090 (2000b) ADS
    J. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007)
    S.B. Gabriel, J. Feynman, Power law distribution for solar energetic proton events. Sol. Phys. 165, 337鈥?46 (1996) ADS
    X. Garbet, R.E. Waltz, Heat flux driven ion turbulence. Phys. Plasmas 5, 2836 (1998) ADS
    X. Garbet, P. Mantica, F. Ryter, G. Cordey, F. Imbeaux, C. Sozzi, A. Manini, E. Asp, V. Parail, R. Wolf (the JET EFDA Contributors), Profile stiffness and global confinement. Plasma Phys. Control. Fusion 46, 1351鈥?359 (2004)
    L. Garcia, B.A. Carreras, Avalanche properties in a transport model based on critical-gradient fluctuation dynamics. Phys. Plasmas 12, 092305 (2005) (7 pp.) ADS
    L. Garcia, B.A. Carreras, D.E. Newman, A self-organized critical transport model based on critical-gradient fluctuation dynamics. Phys. Plasmas 9, 841 (2002) ADS
    M.K. Georgoulis, L. Vlahos, Variability of the occurrence frequency of solar flares and the statistical flare. Astron. Astrophys. 336, 721鈥?34 (1998) ADS
    L. Gil, D. Sornette, Landau-Ginzburg theory of self-organized criticality. Phys. Rev. Lett. 76, 3991鈥?994 (1996) ADS
    R. Gilmore, Catastrophe Theory for Scientists and Engineers (Dover, New York, 1993)
    M. Gilmore, C.X. Yu, T.L. Rhodes, W.A. Peebles, Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9, 1312 (2002) ADS
    B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, 1954) MATH
    A. Greco, W.H. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 69, L111鈥揕114 (2009b) ADS
    A. Greco, W.H. Matthaeus, S. Servidio, P. Dmitruk, Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process? Phys. Rev. E 80, CiteID 046401 (2009a)
    J.D. Gunton, The dynamics of random interfaces in phase transitions. J. Stat. Phys. 34(5), 1019鈥?037 (1984) ADS MathSciNet
    O.D. Gurcan, P.H. Diamond, T.S. Hahm, Z. Lin, Dynamics of turbulence spreading in magnetically confined plasmas. Phys. Plasmas 12, 032303 (2005) ADS
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141 (1986) ADS MathSciNet MATH
    A. Hasegawa, Self-organization processes in continuous media. Adv. Phys. 34(1), 1鈥?2 (1985) ADS
    S. Havlin, D. ben-Avraham, Diffusion in disordered media. Adv. Phys. 51, 187鈥?92 (2002) ADS
    W.W. Heidbrink, Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008) (15 pp.) ADS
    S. Hergarten, H.J. Neugebauer, Self-organized criticality in a landslide model. Geophys. Res. Lett. 25(4), 801鈥?04 (1998). doi:10.鈥?029/鈥?8GL50419 ADS
    B. Hnat, S.C. Chapman, K. Kiyani, G. Rowlands, N.W. Watkins, On the fractal nature of the magnetic field energy density in the solar wind. Geophys. Res. Lett. 34(15), CiteID L15108 (2007)
    P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977) ADS
    T.S. Horbury, A. Balogh, Structure function measurements of the intermittent MHD turbulent cascade. Nonlinear Process. Geophys. 4(3), 185鈥?99 (1997) ADS
    W. Horton, I. Doxas, A low-dimensional energy-conserving state space model for substorm dynamics. J. Geophys. Res. 101(A2), 27223鈥?7238 (1996) ADS
    W. Horton, J.P. Smith, R. Weigel, C. Crabtree, I. Doxas, B. Goode, J. Cary, The solar-wind driven magnetosphere-ionosphere as a complex dynamical system. Phys. Plasmas 6(11), 1鈥? (1999)
    M. Hoshino, Y. Omura, L. Lanzerotti (eds.), Frontiers in Magnetospheric Plasma Physics: Celebrating 10 Years of Geotail Operation (Elsevier, Amsterdam, 2005)
    K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64, 011114 (2001) ADS
    H.E. Hurst, Long-term storage capacity of reservoirs (with discussion). Trans. Am. Soc. Civ. Eng. 116, 770鈥?99 (1951)
    G.T.A. Huysmans, ELMs: MHD instabilities at the transport barrier. Plasma Phys. Control. Fusion 47, B165鈥揃178 (2005)
    K. Ida, J.E. Rice, Rotation and momentum transport in tokamaks and helical systems. Nucl. Fusion 54, 045001 (2014) ADS
    Y. Idomura, M. Ida, T. Urano Kano, N. Aiba, S. Tokuda, Conservative global gyrokinetic toroidal full-f five dimensional Vlasov simulation. Comput. Phys. Commun. 179, 391 (2008) ADS MATH
    Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulations. Nucl. Fusion 49, 065029 (2009) ADS
    N. Jain, A.S. Sharma, Electron-scale processes in collisionless magnetic reconnection. Phys. Plasmas 16, 055905 (2009)
    S. Jalan, R.E. Amritkar, Self-organized and driven phase synchronization in coupled maps. Phys. Rev. Lett. 90(1), 014101 (2003) ADS MathSciNet
    H.J. Jensen, Self-organized Criticality. Emergent Complex Behavior in Physical and Biological Systems (Cambridge University Press, Cambridge, 1998) MATH
    S. Jespersen, R. Metzler, H.C. Fogedby, L茅vy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736鈥?745 (1999) ADS
    R. Jha, P.K. Kaw, D.R. Kulkarni, J.C. Parikh, A. Team, Evidence of Levy stable process in tokamak edge turbulence. Phys. Plasmas 10, 699 (2003) ADS
    J.W. Kantelhardt, E. Kpscielny-Bunde, H.A. Rego, S. Havlin, A. Bunde, Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441鈥?54 (2001) ADS MATH
    J.W. Kantelhardt, S.A. Zschesinger, E. Kpscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanely, Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87鈥?14 (2002) ADS MATH
    A.J. Klimas, D. Vassiliadis, D.N. Baker, D.A. Roberts, The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. 101(A6), 13089鈥?3113 (1996) ADS
    A.J. Klimas, J.A. Valdivia, D. Vassiliadis, D.N. Baker, M. Hesse, J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetosphere plasma sheet. J. Geophys. Res. 105(A8), 18765鈥?8780 (2000) ADS
    A.J. Klimas, V.M. Uritsky, D. Vassiliadis, D.N. Baker, Reconnection and scale-free avalanching in a driven current-sheet model. J. Geophys. Res. 109, A02218 (2004) ADS
    A.J. Klimas, V.M. Uritsky, D. Vassiliadis, D.N. Baker, A mechanism for the loading-unloading substorm cycle missing in MHD global magnetospheric simulation models. Geophys. Res. Lett. 32, L14108 (2005) ADS
    A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynold鈥檚 numbers. Dokl. Akad. Nauk SSSR 30, 301鈥?05 (1941) ADS
    B.V. Kozelov, V.M. Uritsky, A.J. Klimas, Power law probability distributions of multiscale auroral dynamics from ground-based tv observations. Geophys. Res. Lett. 31(20), 20804 (2004) ADS
    R.H. Kraichnan, On Kolmogorov鈥檚 inertial-range theories. J. Fluid Mech. 62, 305鈥?30 (1974) ADS MathSciNet MATH
    S. Ku, C.S. Chang, P.H. Diamond, Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49, 115021 (2009) ADS
    S. Lennartz, A. Bunde, Distribution of natural trends in long-term correlated records: A scaling approach. Phys. Rev. E 84, 021129 (2011) ADS
    E.J. Lerner, Space Weather, Discover (August 1995)
    Z.V. Lewis, On the apparent randomness of substorms. Geophys. Res. Lett. 18, 1849 (1991)
    W.W. Liu, P. Charbonneau, K. Thibault, L. Morales, Energy avalanches in the central plasma sheet. Geophys. Res. Lett. 33, L19106 (2006) ADS
    W.W. Liu, L.F. Morales, V.M. Uritsky, P. Charbonneau, Formation and disruption of current filaments in a flow-driven turbulent magnetosphere. J. Geophys. Res. 116, 03213 (2011)
    E.T. Lu, Avalanches in continuum driven dissipative systems. Phys. Rev. Lett. 74(13), 2511 (1995) ADS
    E.T. Lu, R.J. Hamilton, Avalanches and the distribution of solar flares. Astrophys. J. 380, L89鈥揕92 (1991) ADS
    A.T.Y. Lui, R.E. Lopez, S.M. Krimigis, R.W. McEntire, L.J. Zanetti, T.A. Potemra, A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 15, 721鈥?24 (1988) ADS
    A.T.Y. Lui, S.C. Chapman, K. Liou, P.T. Newell, C.I. Meng, M. Brittnacher, G.K. Parks, Is the dynamic magnetosphere an avalanching system? Geophys. Res. Lett. 27(7), 911鈥?14 (2000) ADS
    J.G. Lyon, The solar wind-magnetosphere-ionosphere system. Science 288, 1987鈥?991 (2000) ADS
    C.-Y. Ma, D. Summers, Formation of power law energy spectra in space plasmas by stochastic acceleration due to whistler-mode waves. Geophys. Res. Lett. 25, 4099鈥?102 (1998) ADS
    W.M. Macek, Chaos and multifractals in the solar wind. Adv. Space Sci. 46(4), 526鈥?31 (2010) ADS
    W.M. Macek, A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence. Geophys. Res. Lett. 35(2), L02108 (2008) ADS
    W.M. Macek, A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. J. Geophys. Res. 114, A03108 (2009). doi:10.鈥?029/鈥?008JA013795 ADS
    J. Madsen, J.J. Rasmussen, J. Juul, V. Naulin, A.H. Nielsen, F. Treue, Gyrofluid potential vorticity equation and turbulent equipartion states. Plasma Phys. Control. Fusion 57(5), 054016 (2015) ADS
    B.D. Malamud, G. Morein, D.L. Turcotte, Forest fires: An example of self-organized critical behavior. Science 281(5384), 1840鈥?842 (1998). doi:10.鈥?126/鈥媠cience.鈥?81.鈥?384.鈥?840 ADS
    B. Mandelbrot, J.R. Wallis, Some long-run properties geophysical record. Water Resour. Res. 5, 321鈥?40 (1969) ADS
    P. Mantica, F. Ryter, Perturbative studies of turbulent transport in fusion plasmas. C. R. Phys. 7, 634鈥?49 (2006) ADS
    P. Mantica, A. Thyagaraja, J. Weiland, G.M.D. Hogeweij, P.J. Knight, Heat pinches in electron-heated tokamak plasmas: Theoretical turbulence models versus experiments. Phys. Rev. Lett. 95(18), 185002 (2005) (4 pp.) ADS
    W.H. Matthaeus, M.L. Goldstein, Low-frequency \(1/f\) noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495鈥?98 (1986) ADS
    N. Mattor, P.H. Diamond, Drift wave propagation as a source of plasma edge turbulence. Phys. Rev. Lett. 72, 486 (1994) ADS
    J.M. McAteer, M.J. Aschwanden, M. Dimitropoulou, M.K. Georgoulis, G. Pruessner, L. Morales, J. Ireland, V. Abramenko, 25 years of self-organized criticality: Numerical detection methods. Space Sci. Rev. (2015), this issue. doi:10.鈥?007/鈥媠11214-015-0158-7
    R. Metzler, J. Klafter, The random walk鈥檚 guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1鈥?7 (2000) ADS MathSciNet MATH
    R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161鈥揜208 (2004) ADS MathSciNet MATH
    R. Meyrand, S. Galtier, A universal law for solar-wind turbulence at electron scales. Astrophys. J. 721, 1421鈥?424 (2010) ADS
    J.A. Mier, L. Garcia, R. Sanchez, Study of the interaction between diffusive and avalanche-like transport in near-critical dissipative-trapped-electron-mode turbulence. Phys. Plasmas 13, 102308 (2006) ADS
    J.A. Mier, R. Sanchez, L. Garcia, B.A. Carreras, D.E. Newman, Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. Phys. Rev. Lett. 101, 165001 (2008) ADS
    A.V. Milovanov, Pseudochaos and low-frequency percolation scaling for turbulent diffusion in magnetized plasma. Phys. Rev. E 79, 046403 (2009) (10 pp.) ADS
    A.V. Milovanov, Self-organized criticality with a fishbone-like instability cycle. Europhys. Lett. 89, 60004 (2010) (6 pp.) ADS
    A.V. Milovanov, Dynamic polarization random walk model and fishbone-like instability for self-organized critical systems. New J. Phys. 13, 043034 (2011) (22 pp.) ADS
    A.V. Milovanov, Percolation models of self-organized critical phenomena, chap. 4, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013), pp. 103鈥?82
    A.V. Milovanov, A. Iomin, Localization-delocalization transition on a separatrix system of nonlinear Schr枚dinger equation with disorder. Europhys. Lett. 100, 10006 (2012) (6 pp.)
    A.V. Milovanov, A. Iomin, Topological approximation of the nonlinear Anderson model. Phys. Rev. E 89, 062921 (2014) (19 pp.) ADS
    A.V. Milovanov, A. Iomin, Topology of delocalization in the nonlinear Anderson model and anomalous diffusion on finite clusters. Discontinuity, Nonlinearity, Complex. 4(2), 149鈥?60 (2015)
    A.V. Milovanov, J.J. Rasmussen, Critical conducting networks in disordered solids: ac universality from topological arguments. Phys. Rev. B 64, 212203 (2001) (4 pp.) ADS
    A.V. Milovanov, J.J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75鈥?0 (2005) (6 pp.) ADS MATH
    A.V. Milovanov, J.J. Rasmussen, A mixed SOC-turbulence model for nonlocal transport and L茅vy-fractional Fokker-Planck equation. Phys. Lett. A 378, 1492鈥?500 (2014) (9 pp.) ADS MathSciNet
    A.V. Milovanov, J.J. Rasmussen, Self-organized criticality revisited: Nonlocal transport by turbulent amplification. J. Plasma Phys. 81, 495810606 (2015)
    A.V. Milovanov, L.M. Zelenyi, Fracton excitations as a driving mechanism for the self-organized dynamical structuring in the solar ind. Astrophys. Space Sci. 264, 317鈥?45 (1999) ADS MATH
    A.V. Milovanov, L.M. Zelenyi, Functional background of the Tsallis entropy: 鈥渃oarse-grained鈥?systems and 鈥渒appa鈥?distribution functions. Nonlinear Process. Geophys. 7, 211鈥?21 (2000) ADS
    A.V. Milovanov, L.M. Zelenyi, 鈥淪trange鈥?Fermi processes and power law nonthermal tails from a self-consistent fractional kinetic equation. Phys. Rev. E 64, 052101 (2001) (4 pp.) ADS
    A.V. Milovanov, L.M. Zelenyi, Nonequilibrium stationary states in the Earth鈥檚 magnetotail: Stochastic acceleration processes and nonthermal distribution functions. Adv. Space Res. 30(12), 2667鈥?674 (2002) ADS
    A.V. Milovanov, L.M. Zelenyi, G. Zimbardo, P. Veltri, Self-organized branching of magnetotail current systems near the percolation threshold. J. Geophys. Res. Space Phys. 106(A4), 6291鈥?308 (2001a) ADS
    A.V. Milovanov, L.M. Zelenyi, P. Veltri, G. Zimbardo, A.L. Taktakishvili, Geometric description of the magnetic field and plasma coupling in the near-Earth stretched tail prior to a substorm. J. Atmos. Sol.-Terr. Phys. 63, 705鈥?21 (2001b) ADS
    N.R. Moloney, J. Davidsen, Extreme bursts in the solar wind. Geophys. Res. Lett. 38(14) (2011). doi:10.鈥?029/鈥?011GL048245
    R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Determining computational complexity from characteristic 鈥榩hase transitions鈥? Nature 400, 133鈥?37 (1999). doi:10.鈥?038/鈥?2055 ADS MathSciNet
    E.W. Montroll, M.F. Shlesinger, On \(1/f\) noise and other distributions with long tails. Proc. Natl. Acad. Sci. USA 79, 3380鈥?383 (1982) ADS MathSciNet MATH
    E.W. Montroll, G.H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, 167鈥?81 (1965) ADS MathSciNet
    L. Morales, P. Charbonneau, Scaling laws and frequency distributions of avalanche areas in a SOC model of solar flares. Geophys. Res. Lett. 35, 4108 (2008a) ADS
    L. Morales, P. Charbonneau, Self-organized critical model of energy release in an idealized coronal loop. Astrophys. J. 682, 654鈥?66 (2008b) ADS
    L. Morales, P. Charbonneau, Geometrical properties of avalanches in a pseudo-3D coronal loop. Astrophys. J. 698, 1893鈥?902 (2009) ADS
    S. Nagel, Instabilities in a sandpile. Rev. Mod. Phys. 64, 321 (1992) ADS
    M. Nakata, Y. Idomura, Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulations. Nucl. Fusion 49, 065029 (2013)
    V. Naulin, A.H. Nielsen, J.J. Rasmussen, Dispersion of ideal particles in a two-dimensional model of electrostatic turbulence. Phys. Plasmas 6, 4575鈥?585 (1999) ADS
    V. Naulin, O.E. Garcia, A.H. Nielsen, J.J. Rasmussen, Statistical properties of transport in plasma turbulence. Phys. Lett. A 321, 355鈥?65 (2004) ADS MATH
    V. Naulin, A.H. Nielsen, J.J. Rasmussen, Turbulence spreading, anomalous transport, and pinch effect. Phys. Plasmas 12, 122306 (2005) ADS MathSciNet
    V. Naulin, J. Rasmussen, P. Mantica, D. del-Castillo-Negrete (JET-EFDA contributors), Fast heat pulse propagation by turbulence spreading. J. Plasma Fusion Res. 8, 55鈥?9 (2009)
    D.E. Newman, B.A. Carreras, P.H. Diamond, T.S. Hahm, The dynamics of marginality and self-organized criticality as a paradigm turbulent transport. Phys. Plasmas 3(5), 1858鈥?866 (1996) ADS
    R.M. Nicol, S.C. Chapman, R.O. Dendy, Quantifying the anisotropy and solar cycle dependence of \(1/f\) solar wind fluctuations observed by advanced composition explorer. Astrophys. J. 703, 2138鈥?151 (2009) ADS
    G. Nicolis, I. Prigogine, Self-organization in Nonequilibrium Systems (Wiley, New York, 1977) MATH
    N. Nishizuka, A. Asai, H. Takasaki, H. Kurokawa, K. Shibata, The power law distribution of flare kernels and fractal current sheets in a solar flare. Astrophys. J. 694, L74鈥揕78 (2009) ADS
    Md. Nurujjaman, A.N. Sekar Iyengar, Realization of SOC behavior in a dc glow discharge plasma. Phys. Lett. A 360(6), 717鈥?21 (2007) ADS
    S. Ohtani, T. Higuchi, A.T.Y. Lui, K. Takahashi, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations. J. Geophys. Res. 103, 4671 (1995). doi:10.鈥?029/鈥?7JA03239 ADS
    S. Ohtani, K. Takahashi, T. Higuchi, A.T.Y. Lui, H.E. Spence, J.F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations. J. Geophys. Res. 103, 4671 (1998). doi:10.鈥?029/鈥?7JA03239 ADS
    E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664鈥?76 (1958) ADS
    M.A. Pedrosa, C. Hidalgo, B.A. Carreras, R. Balbin, Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49, 115021 (1999)
    R.-F. Peltier, J.L. V茅hel, Multifractional Brownian motion: Definition and preliminary results. INRIA Res. Rep. RR-2645 (1995)
    C.-K. Peng, S.V. Buldyrev, S. Havlin, F. Sciortino, M. Simons, H.E. Stanley, Long-range correlations in nucleotide sequences. Nature 356, 168 (1992) ADS
    A.A. Petrukovich, T. Mukai, S. Kokubun, S.A. Romanov, Y. Saito, T. Yamamoto, L.M. Zelenyi, Substorm-associated pressure variations in the magnetotail plasma sheet and lobe. J. Geophys. Res. 104(A3), 4501鈥?513 (1999) ADS
    A. Pizzuto, F. Gnesotto, M. Lontano, R. Albanese, G. Ambrosino, M.L. Apicella, M. Baruzzo, A. Bruschi, G. Calabr貌, A. Cardinali, R. Cesario, F. Crisanti, V. Cocilovo, A. Coletti, R. Coletti, P. Costa, S. Briguglio, P. Frosi, F. Crescenzi, V. Coccorese, A. Cucchiaro, B. Esposito, G. Fogaccia, E. Giovannozzi, G. Granucci, G. Maddaluno, R. Maggiora, M. Marinucci, D. Marocco, P. Martin, G. Mazzitelli, F. Mirizzi, S. Nowak, R. Paccagnella, L. Panaccione, G.L. Ravera, F. Orsitto, V. Pericoli Ridolfini, G. Ramogida, C. Rita, M. Santinelli, M. Schneider, A.A. Tuccillo, R. Zag贸rski, M. Valisa, R. Villari, G. Vlad, F. Zonca, The Fusion Advanced Studies Torus (FAST): A proposal for an ITER satellite facility in support of the development of fusion energy. Nucl. Fusion 50, 095005 (2010) (16 pp.) ADS
    J.J. Podesta, D.A. Roberts, M.L. Goldstein, Power spectrum of small-scale turbulent velocity fluctuations in the solar wind. J. Geophys. Res. 111(A10), CiteID A10109 (2006a)
    J.J. Podesta, D.A. Roberts, M.L. Goldstein, Self-similar scaling of magnetic energy in the inertial range of solar wind turbulence. J. Geophys. Res. 111(A9), CiteID A09105 (2006b)
    J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543鈥?48 (2007) ADS
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999) MATH
    P. Politzer, Observation of avalanche like phenomena in a magnetically confined plasma. Phys. Rev. Lett. 84, 1192鈥?195 (2000) ADS
    P.A. Politzer, M.E. Austin, M. Gilmore, G.R. McKee, T.L. Rhodes, C.X. Yu, E.J. Doyle, T.E. Evans, R.A. Moyere, Characterization of avalanche-like events in a confined plasma. Phys. Plasmas 9(5), 1962鈥?969 (2002) ADS
    D. Prichard, J.E. Borovsky, P.M. Lemons, C.P. Price, Time dependence of substorm recurrence: An information-theoretic analysis. J. Geophys. Res. 101(A7), 15359鈥?5369 (1996) ADS
    G. Pruessner, SOC systems in astrophysics, chap. 7, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013), pp. 233鈥?86. http://鈥媤ww.鈥媜penacademicpres鈥媠.鈥媎e
    S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, 105010 (2006) ADS
    T.L. Rhodes, R.A. Moyer, R. Groebner, E.J. Doyle, R. Lehmer, W.A. Peebles, C.L. Retting, Experimental evidence for self-organized criticality in tokamak plasma turbulence. Phys. Lett. A 253, 181鈥?86 (1999) ADS
    M.O. Riazantzeva, V.P. Budaev, L.M. Zelenyi, G.N. Zastenker, G.P. Pavlos, J. Safrankova, Z. Nemecek, L. Prech, F. Nemec, Dynamic properties of small-scale solar wind plasma fluctuations. Philos. Trans. R. Soc. Lond. A 373, 20140146 (2015). doi:10.鈥?098/鈥媟sta.鈥?014.鈥?146 ADS
    J.E. Rice, M.J. Greenwald, Y.A. Podpaly, M.L. Reinke, P.H. Diamond, J.W. Hughes, N.T. Howard, Y. Ma, I. Cziegler, B.P. Duval, P.C. Ennever, D. Ernst, C.L. Fiore, C. Cao, J.H. Irby, E.S. Marmar, M. Porkolab, N. Tsujii, S.M. Wolfe, Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas. Phys. Plasmas 19, 056106 (2012) ADS
    E. Robbrecht, D. Berghmans, R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222鈥?234 (2009) ADS
    R.R. Rosa, A.S. Sharma, J.A. Valdivia, Characterization of localized turbulence in plasma extended systems. Physica A 257(1鈥?), 509鈥?14 (1998) ADS
    R.R. Rosa, A.S. Sharma, J.A. Valdivia, Characterization of asymmetric fragmentation patterns in spatially extended systems. Int. J. Mod. Phys. C 10(1), 147鈥?63 (1999) ADS
    R. Rosner, W.H. Tucker, G.S. Vaiana, Dynamics of quiescent solar corona. Astrophys. J. 220, 643鈥?65 (1978) ADS
    G. Rostoker, Implications of the hydrodynamic analogue for the solar-terrestrial interaction and the mapping of high latitude convection pattern into the magnetotail. Geophys. Res. Lett. 11(3), 251鈥?54 (1984) ADS
    M. Rypdal, K. Rypdal, Stochastic modeling of the AE index and its relation to fluctuations in \(B_{z}\) of the IMF on time scales shorter than substorm duration. J. Geophys. Res. 115(A11), CiteID A11216 (2010)
    M. Rypdal, K. Rypdal, Discerning a linkage between solar wind turbulence and ionospheric dissipation by a method of confined multifractal motions. J. Geophys. Res. 116(A2), CiteID A02202 (2011)
    F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010) ADS
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivative. Theory and Applications (Gordon & Breach, Amsterdam, 1993)
    R. Sanchez, D.E. Newman, B.A. Carreras, Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices. Nucl. Fusion 41, 247鈥?56 (2001) ADS
    R. Sanchez, D.E. Newman, B.A. Carreras, Waiting-time statistics of self-organized-criticality systems. Phys. Rev. Lett. 88, 068302 (2002) ADS
    R. Sanchez, B.P. van Milligen, D.E. Newman, B.A. Carreras, Quiet-time statistics of electrostatic turbulent fluxes from the JET tokamak and the W7-AS and TJ-II stellarators. Phys. Rev. Lett. 90, 185005 (2003) ADS
    R. Sanchez, B.P. van Milligen, B.A. Carreras, Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm. Phys. Plasmas 12, 056105 (2005) ADS
    R. Sanchez, B.A. Carreras, D.E. Newman, V.E. Lynch, B.P. van Milligen, Renormalization of tracer turbulence leading to fractional differential equations. Phys. Rev. E 74, 016305 (2006) ADS MathSciNet
    Y. Sarazin, P. Ghendrih, Intermittent particle transport in two-dimensional edge turbulence. Phys. Plasmas 5, 4214鈥?228 (1998) ADS MathSciNet
    Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, G. Dif-Pradalier, Large scale dynamics in flux driven gyrokinetic turbulence. Nucl. Fusion 50, 054004 (2010) ADS
    Y. Sarazin et al., Predictions on heat transport and plasma rotation from global gyrokinetic simulations. Nucl. Fusion 51, 103023 (2011) ADS
    S. Savin, L. Zelenyi, E. Amata, V. Budaev, J. Buechner, J. Blecki, M. Balikhin, S. Klimov, V.E. Korepanov, L. Kozak, V. Kudryashov, V. Kunitsyn, L. Lezhen, A.V. Milovanov, Z. Nemecek, I. Nesterov, D. Novikov, E. Panov, J.L. Rauch, H. Rothkaehl, S. Romanov, J. Safrankova, A. Skalsky, M. Veselov, ROY鈥擜 multiscale magnetospheric mission. Planet. Space Sci. 59, 606鈥?17 (2011) ADS
    S. Savin, V.B. Belakhovsky, V.A. Pilipenko, V. Budaev, F. Marcucci, G. Consolini, A.S. Sharma, L. Kozak, J. Safrankova, Z. Nemecek, J. Blecki, L. Legen, Correlations of the super-low frequency resonances at magnetospheric boundaries with geostationary and ionospheric data. Adv. Space Res. (2015, in press)
    C. Sch盲fer, M.G. Rosenblum, J. Kurths, H.H. Abel, Heartbeat synchronized with ventilation. Nature 392, 239鈥?40 (1998) ADS
    L.S. Schulman, P.E. Seiden, Hierarchical structure in the distribution of galaxies. Astrophys. J. 311, 1鈥? (1986) ADS
    V.A. Sergeev et al., Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817 (1996) ADS
    V.A. Sergeev, M.I. Sitnov, A.S. Sharma, Linear and nonlinear prediction models using multispacecraft data. Eos Trans. AGU 81(48), F1049 (2000). Paper SM12B-08
    V.A. Setty, Application of fluctuation analysis to characterize multiscale nature and predictability of complex systems. Ph.D. dissertation, University of Maryland, College Park (2014)
    V.A. Setty, A.S. Sharma, Characterizing detrended fluctuation analysis of multifractional Brownian motion. Physica A 419, 698 (2015) ADS
    A.S. Sharma, Assessing the magnetospheres nonlinear behavior鈥擨ts dimension is low, its predictability high. Rev. Geophys. 33(Suppl), 645鈥?50 (1995)
    A.S. Sharma, Nonlinear dynamical studies of global magnetospheric dynamics, in Nonlinear Waves and Chaos in Space Plasmas, ed. by T. Hada, H. Matsumoto (Terra Scientific, Tokyo, 1997), pp. 359鈥?89
    A.S. Sharma, The magnetospheric: A complex driven system, in Waves, Coherent Structures and Turbulence in Plasmas, ed. by A. Sen, A.S. Sharma, P.N. Guzdar. AIP Conf. Proc., vol. 1308 (AIP, Melville, 2010), pp. 200鈥?12
    A.S. Sharma, Complexity in nature and data-enabled science: The Earth鈥檚 magnetosphere, in Complex Processes in Plasmas and Nonlinear Dynamical Systems Extreme, ed. by A. Das, A.S. Sharma. AIP Conf. Proc., vol. 1582 (AIP, Melville, 2014), pp. 35鈥?5. ISBN: 978-0-7354-1214-9
    A.S. Sharma, S.A. Curtiss, Magnetospheric multiscale mission: Cross-scale exploration of complexity in the magnetosphere, in Nonequilibrium Phenomena in Plasmas, ed. by A.S. Sharma, P.K. Kaw (Springer, Berlin 2005), pp. 179鈥?95
    A.S. Sharma, P.K. Kaw (eds.), Nonequilibrium Phenomena in Plasmas (Springer, Berlin, 2005)
    A.S. Sharma, V.A. Setty, Langevin model of crossover in multiscale fluctuations: Substorm time-scales in Earth鈥檚 magnetosphere, in Amer. Phys. Soc. Div. Plasma Phys. Meeting, Abstract: TO5.00014 (2015a)
    A.S. Sharma, V.A. Setty, Crossover behavior in multiscale fluctuations in Earth鈥檚 magnetosphere, in Amer. Geophys. Union Fall Meeting (2015b)
    A.S. Sharma, T. Veeramani, Extreme events and long-range correlations in space weather. Nonlinear Process. Geophys. 18, 719鈥?25 (2011). doi:10.鈥?194/鈥媙pg-18-719-2011 ADS
    A.S. Sharma, D. Vassiliadis, K. Papadopoulos, Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis. Geophys. Res. Lett. 20(5), 335鈥?38 (1993) ADS
    A.S. Sharma, J.A. Valdivia, R. Rosa, Spatio-temporal chaos using time series data, in Nonlinear Dynamics and Computational Physics, ed. by V.B. Sheorey (Narosa Publishers, New Delhi, 1998), pp. 201鈥?13
    A.S. Sharma et al., Magnetail dynamics from multispacecraft data: Phase transition-like behavior, Fall Meeting, AGU (2000)
    A.S. Sharma, M.I. Sitnov, K. Papadopoulos, Substorms as nonequilibrium transitions of the magnetosphere. J. Atmos. Sol.-Terr. Phys. 63(13), 1399鈥?406 (2001) ADS
    A.S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Petrukovich, J.A. Sauvaud, V. Semenev, V. Sergeev, J.A. Slavin, B.U.O. Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: A review. Ann. Geophys. 26, 955鈥?006 (2008) ADS
    A.S. Sharma, D.N. Baker, A. Bhattacharyya, A. Bunde, V.P. Dimri, H.K. Gupta, V.K. Gupta, S. Lovejoy, I.G. Main, D. Schertzer, H. von Storch, N.W. Watkins, Complexity and extreme events in geosciences: An overview, in Complexity and Extreme Events in Geosciences, ed. by A.S. Sharma, V.P. Dimri, A. Bunde, D.N. Baker. Geophysical Monograph Series, vol. 196 (Am. Geophys. Union, Washington, 2012), pp. 1鈥?6
    G. Siscoe, The magnetosphere: A union of interdependent parts. Eos Trans. AGU 72, 494鈥?95 (1991) ADS
    M.I. Sitnov, H.V. Malova, A.S. Sharma, Role of the temperature ratio in the linear stability of the quasi-neutral sheet tearing model. Geophys. Res. Lett. 25(3), 269鈥?72 (1998) ADS
    M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, J.A. Valdivia, A.J. Klimas, D.N. Baker, Phase transition-like behavior of the magnetosphere during substorms. J. Geophys. Res. 105(A6), 12955鈥?2974 (2000) ADS
    M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions. Phys. Rev. E 65, 016116 (2001) ADS
    M.I. Sitnov, A.S. Sharma, P.N. Guzdar, P.H. Yoon, Magnetic reconnection onset in the tail of the Earth鈥檚 magnetosphere. J. Geophys. Res. 107(A9), 1256 (2002). doi:10.鈥?029/鈥?001JA009148 ADS
    J.P. Smith, W. Horton, Analysis of the bimodanl nature of solar wind-magnetosphere coupling. J. Geophys. Res. 103, 14917 (1998) ADS
    I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Phys. Today 55, 48鈥?4 (2002)
    D. Sornette, Critical phase transitions made self-organized: A dynamical system feedback mechanism for self-organized criticality. J. Phys. I France 2, 2065鈥?073 (1992)
    D. Sornette, G. Ouillon, Dragon kings: Mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205, 1鈥?6 (2012)
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971)
    H.E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358 (1999)
    J. Takalo, J. Timonem, H. Koskinen, Correlation dimension and affinity of AE data and bicolored noise. Geophys. Res. Lett. 20, 1527鈥?530 (1993) ADS
    J. Takalo, J. Timonem, A. Klimas, J. Valdivia, D. Vassiliadis, Nonlinear energy dissipation in a cellular automaton magnetotail field model. Geophys. Res. Lett. 26(13), 1813鈥?816 (1999a) ADS
    J. Takalo, J. Timonem, A. Klimas, J. Valdivia, D. Vassiliadis, A coupled-map model for the magnetotail current sheet. Geophys. Res. Lett. 26(19), 2913鈥?916 (1999b) ADS
    S.W.Y. Tam, T. Chang, S.C. Chapman, N.W. Watkins, Analytical determination of power law index for the Chapman et al. sandpile (FSOC) analog for magnetospheric activity. Geophys. Res. Lett. 27(9), 1367 (2000) ADS
    V. Tangri, A. Das, P.K. Kaw, R. Singh, Continuum self-organized criticality model of turbulent transport in tokamaks. Phys. Rev. Lett. 91(2), 025001 (2003) ADS
    J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741鈥?63 (1986) ADS
    B. Thomas, A.S. Sharma, M.I. Sitnov, Multifractal properties of the solar wind-magnetosphere system, in Amer. Geophys. Union Fall Meeting (2001)
    S. Tokunaga, H. Jhang, S.S. Kim, P.H. Diamond, A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes. Phys. Plasmas 19, 092303 (2012) ADS
    C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479鈥?87 (1988) ADS MathSciNet MATH
    B.T. Tsurutani, M. Sugiura, T. Iyemori, B.E. Goldstein, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, The nonlinear response of AE to the IMF Bs driver: A spectral break at 5 hours. Geophys. Res. Lett. 17, 279 (1990) ADS
    D. Turcotte, J. Rundle, H. Frauenfelder (eds.), Self-organized Complexity in the Physical, Biological and Social Science (National Academy Press, Washington, 2002)
    A.Y. Ukhorskiy, Global and multiscale aspects of magnetospheric dynamics: From modeling to forecasting, Ph.D. dissertation, University of Maryland, College Park (2003)
    A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Global and multiscale aspects of magnetospheric dynamics in local-linear filters. J. Geophys. 107(A11), 1369 (2002) ADS
    A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Combining global and multiscale features in the description of solar wind鈥擬agnetosphere couplings. Ann. Geophys. 21(9), 1913 (2004a) ADS
    A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Global and multiscale dynamics of the magnetosphere: From modeling to forecasting. Geophys. Res. Lett. 31(8), L08802 (2004b). doi:10.鈥?029/鈥?003GL018932 . See also J. Atmos. Sol.-Terr. Phys. 63(13), 1399鈥?406. ADS
    V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Comparative study of dynamical critical scaling in the auroral electrojet index versus solar wind fluctuations. Geophys. Res. Lett. 28(19), 3809鈥?812 (2001a) ADS
    V.M. Uritsky, M.I. Pudovkin, A. Steen, Geomagnetic substorms as perturbed self-organized critical dynamics of the magnetosphere. J. Atmos. Sol.-Terr. Phys. 63(13), 1415鈥?424 (2001b) ADS
    V.M. Uritsky, A.J. Klimas, D. Vassiliadis, D. Chua, G. Parks, Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system. J. Geophys. Res. 107(A12), 1426 (2002)
    V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Evaluation of spreading critical exponents from the spatiotemporal evolution of emission regions in the nighttime aurora. Geophys. Res. Lett. 30(15), L1813 (2003) ADS
    V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Critical finite-size scaling of energy and lifetime probability distributions of auroral emissions. Geophys. Res. Lett. 33(8), L08102 (2006) ADS
    V.M. Uritsky, E.F. Donovan, A.J. Klimas, E. Spanswick, Scale-free and scale-dependent modes of energy release dynamics in the nighttime magnetosphere. Geophys. Res. Lett. 35(21), L21101 (2008) ADS
    J.A. Valdivia, A.S. Sharma, K. Papadopoulos, Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 23(21), 2899鈥?902 (1996) ADS
    J.A. Valdivia, D. Vassilliadis, A.J. Klimas, A.S. Sharma, K. Papadopoulos, Modeling the spatial structure of the high latitude magnetic perturbations and the related current systems. Phys. Plasmas 6(11), 4185鈥?194 (1998) ADS
    J.A. Valdivia, D. Vassilliadis, A.J. Klimas, A.S. Sharma, K. Papadopoulos, Spatio-temporal activity of magnetic storms. J. Geophys. Res. 104(A6), 12239鈥?2250 (1999) ADS
    M.-A. Valli猫res-Nollet, P. Charbonneau, V.M. Uritsky, E. Donovan, W.W. Liu, Dual scaling for self-organized critical models of the magnetosphere. J. Geophys. Res. 115, A12217 (2010) ADS
    B.P. van Milligen, R. Sanchez, B.P. Carreras, Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws. Phys. Plasmas 11(5), 2272鈥?285 (2004) ADS
    B.Ph. van Milligen, R. Sanchez, B.A. Carreras, V.E. Lynch, Additional evidence for the universality of the probability distribution of turbulent fluctuations and fluxes in the scrape-off layer region of fusion plasmas. Phys. Plasmas 12, 052507 (2005) ADS
    D. Vassiliadis, Systems theory for geospace plasma dynamics. Rev. Geophys. 44, RG2002 (2006) ADS
    D. Vassiliadis, A.S. Sharma, T.E. Eastman, K. Papadopoulos, Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett. 17(11), 1841鈥?844 (1990) ADS
    D. Vassiliadis, A.S. Sharma, K. Papadopoulos, Lyapunov exponent of magnetospheric activity from AL time series. Geophys. Res. Lett. 18(8), 1731鈥?734 (1991a)
    D. Vassiliadis, A.S. Sharma, K. Papadopoulos, An empirical model relating the auroral geomagnetic activity to the interplanetary magnetic field. Geophys. Res. Lett. 20(16), 1643鈥?646 (1991b) ADS
    D. Vassiliadis, A.J. Klimas, D.N. Baker, D.A. Roberts, A description of the solar wind-magnetosphere coupling based on nonlinear filters. J. Geophys. Res. 100(A3), 3495鈥?512 (1995) ADS
    D. Vassiliadis, A. Anastasiadis, M. Georgoulis, L. Vlahos, Derivation of solar flare cellular automata models from a subset of the magnetohydrodynamic equations. Astrophys. J. 509, L53鈥揕56 (1998) ADS
    P. Veltri, MHD turbulence in the solar wind: Self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, A787鈥揂795 (1999) ADS
    A. Vespignani, S. Zapperi, How self-organized criticality works: A unified mean-field picture. Phys. Rev. E. 57, 6345, 6362 (1998) ADS MathSciNet
    L. Vlahos, M.K. Georgoulis, On the self-similarity of unstable magnetic discontinuities in solar active regions. Astrophys. J. 603, L61鈥揕64 (2004) ADS
    W.H. Wang, C.X. Yu, Y.Z. Wen, L. Wang, X.Z. Yang, C.H. Feng, Effect of poloidal sheared flow on the long-range correlation characters of edge plasma turbulent transport. Phys. Plasmas 11, 2075 (2004) ADS
    N.W. Watkins, Bunched black (and grouped grey) swans, dissipative and non-dissipative models of correlated extreme fluctuations in complex geosystems. Geophys. Res. Lett. 40, 402鈥?10 (2013). doi:10.鈥?002/鈥媑rl.鈥?0103 ADS MathSciNet
    N.W. Watkins, S.C. Chapman, R.O. Dendy, G. Rowlands, Robustness of collective behavior in strongly driven avalanche models: Magnetospheric implications. Geophys. Res. Lett. 26(16), 2617鈥?620 (1999) ADS
    N.W. Watkins, S. Oughton, M.P. Freeman, What can we infer about the underlying physics from burst distributions observed in an RMHD simulation. Planet. Space Sci. 49, 1233鈥?237 (2001) ADS
    N.W. Watkins, D. Credgington, R. Sanchez, S.J. Rosenberg, S.C. Chapman, Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Phys. Rev. E 79, 041124 (2009) ADS
    N.W. Watkins, G. Pruessner, S. Chapman, N. Crosby, H.J. Jensen, 25 years of self-organized criticality: Concepts and controversies. Space Sci. Rev. (2015), this issue. doi:10.鈥?007/鈥媠11214-015-0155-x MATH
    W. Wen-Hao, Y. Chang-Xuan, W. Yi-Zhi, X. Yu-Hong, L. Bi-Li, G. Xian-Zu, L. Bao-Hua, N.W. Bao, Self-organized criticality properties of the turbulence-induced particle flux at the plasma edge of the HT-6M tokamak. Chin. Phys. Lett. 18, 793 (2001) ADS
    J. Wesson, Tokamaks (Oxford University Press, Oxford, 2004) MATH
    M.S. Wheatland, P.A. Sturrock, J.M. McTiernan, The waiting-time distribution of solar flare hard X-ray bursts. Astrophys. J. 509, 448鈥?55 (1998) ADS
    K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773鈥?40 (1975) ADS
    R. Woodard, D. Newman, R. Sanchez, B. Carreras, Persistent dynamic correlations in self-organized critical systems away from their critical point. Physica A 373, 215鈥?30 (2007) ADS
    A.J. Wootton, M.E. Austin, R.D. Bengtson, J.A. Boedo, R.V. Bravenec, D.L. Brower, J.Y. Chen, G. Cima, P.H. Diamond, R.D. Durst, Fluctuations and anomalous transport (in tokamaks, particularly TEXT). Plasma Phys. Control. Fusion 30, 1479鈥?491 (1988) ADS
    Y.H. Xu, S. Jachmich, R.R. Weynants, On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma Phys. Control. Fusion 47, 1841鈥?855 (2005) ADS
    G.S. Xu, V. Naulin, W. Fundamenski, J.J. Rasmussen, A.H. Nielsen, B.N. Wan, Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma. Phys. Plasmas 17, 022501 (2010) ADS
    C.X. Yu, M. Gilmore, W.A. Peebles, T.L. Rhodes, Structure function analysis of long-range correlations in plasma turbulence. Phys. Plasmas 10, 2772 (2003) ADS
    H. Yuan, Q. Xiao-Ming, D. Xuan-Tong, W. En-Yao, Self-organized criticality processes in HL-1M tokamak plasma. Chin. Phys. Lett. 20, 87 (2003) ADS
    G.M. Zaslavsky, M.N. Edelman, P.N. Guzdar, M.I. Sitnov, A.S. Sharma, Self-similarity and fractional kinetics of solar wind鈥擬agnetosphere coupling. Physica A 321, 11鈥?0 (2007) ADS
    G.M. Zaslavsky, M.N. Edelman, P.N. Guzdar, M.I. Sitnov, A.S. Sharma, Multiscale behavior and fractional kinetics from the data of solar wind鈥擬agnetosphere coupling. Commun. Nonlinear Sci. Numer. Simul. 13, 314鈥?30 (2008) ADS MATH
    L.M. Zelenyi, A.V. Milovanov, Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics. Phys. Usp. 47(8), 749鈥?88 (2004)
    L.M. Zelenyi, A.V. Milovanov, G. Zimbardo, Multiscale magnetic structure of the distant tail: Self-consistent fractal approach, in New Perspectives on the Earth鈥檚 Magnetotail, ed. by A. Nishida, D.N. Baker, S.W.H. Cowley. Geophys. Monogr. Ser., vol. 105 (Am. Geophys. Union, Washington, 1998), pp. 321鈥?39
    L.M. Zelenyi, A. Artemyev, H. Malova, A.V. Milovanov, G. Zimbardo, Particle transport and acceleration in a time-varying electromagnetic field with a multi-scale structure. Phys. Lett. A 372, 6284鈥?287 (2008) ADS MATH
    Y.-C. Zhang, Scaling theory of self-organized criticality. Phys. Rev. Lett. 63, 470鈥?73 (1989) ADS
    H.B. Zhou, K. Papadopoulos, A.S. Sharma, C.-L. Chang, Electronmagnetohydrodynamic response of a plasma to an external current pulse. Phys. Plasmas 3, 1484 (1996) ADS
    F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad, Transition from weak to strong energetic ion transport in burning plasmas. Nucl. Fusion 45, 477鈥?84 (2005) ADS
    F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, T.S. Hahm, A.V. Milovanov, G. Vlad, Physics of burning plasmas in toroidal magnetic confinement devices. Plasma Phys. Control. Fusion 48, B15鈥揃28 (2006)
    F. Zonca, P. Buratti, A. Cardinali, L. Chen, J.-Q. Dong, Y.-X. Long, A.V. Milovanov, F. Romanelli, P. Smeulders, L. Wang, Z.-T. Wang, C. Castaldo, R. Cesario, E. Giovanozzi, M. Marinucci, V. Pericoli Ridolfini, Electron fishbones: Theory and experimental evidence. Nucl. Fusion 47, 1588鈥?597 (2007) ADS
    F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, A.V. Milovanov, Z. Qiu, G. Vlad, X. Wang, Energetic particles and multi-scale dynamics in fusion plasmas. Plasma Phys. Control. Fusion 57, 014024 (2015) (10 pp.) ADS
  • 作者单位:A. Surjalal Sharma (1)
    Markus J. Aschwanden (2)
    Norma B. Crosby (3)
    Alexander J. Klimas (4)
    Alexander V. Milovanov (5) (6)
    Laura Morales (7)
    Raul Sanchez (8)
    Vadim Uritsky (9)

    1. Department of Astronomy, University of Maryland, College Park, MD, 20740, USA
    2. Solar and Astrophysics Laboratory (LMSAL), Lockheed Martin, Palo Alto, CA, 94304, USA
    3. Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, 1180, Brussels, Belgium
    4. NASA Goddard Space Flight Center, Code 671.0, Greenbelt, MD, 20771, USA
    5. ENEA National Laboratory, Centro Ricerche Frascati, 00044, Frascati, Rome, Italy
    6. Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, 117997, Moscow, Russia
    7. Space Science and Technology Branch, Canadian Space Agency, 6767 Route de l鈥橝eroport, Saint Hubert, Quebec, J3Y8Y9, Canada
    8. Dept. Fisica, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain
    9. Catholic University of America at NASA Goddard Space Flight Center, Code 671, Greenbelt, MD, 20771, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Extraterrestrial Physics and Space Sciences
    Astrophysics
    Planetology
  • 出版者:Springer Netherlands
  • ISSN:1572-9672
文摘
Studies of complexity in extended dissipative dynamical systems, in nature and in laboratory, require multiple approaches and the framework of self-organized criticality (SOC) has been used extensively in the studies of such nonequilibrium systems. Plasmas are inherently nonlinear and many ubiquitous features such as multiscale behavior, intermittency and turbulence have been analyzed using SOC concepts. The role of SOC in advancing our understanding of space and laboratory plasmas as nonequilibrium systems is reviewed in this article. The main emphasis is on how SOC and related approaches have provided new insights and models of nonequilibrium plasma phenomena. Among the natural plasmas the magnetosphere, driven by the solar wind, is a prominent example and extensive data from ground-based and space-borne instruments have been used to study phenomena of direct relevance to space weather, viz. geomagnetic storms and substorms. During geomagnetically active periods the magnetosphere is far from equilibrium, due to its internal dynamics and being driven by the turbulent solar wind, and substorms are prominent features of the complex driven system. Studies using solar wind and magnetospheric data have shown both global and multiscale features of substorms. While the global behavior exhibits system-wide changes, the multiscale behavior shows scaling features. Along with the studies based on observational data, analogue models of the magnetosphere have advanced the understanding of space plasmas as well as the role of SOC in natural systems. In laboratory systems, SOC has been used in modeling the plasma behavior in fusion experiments, mainly in tokamaks and stellarators. Tokamaks are the dominant plasma confinement system and modeling based on SOC have provided a complementary approach to the understanding of plasma behavior under fusion conditions. These studies have provided insights into key features of toroidally confined plasmas, e.g., the existence of critical temperature gradients above which the transport rates increase drastically. The SOC models address the transport properties from a more general approach, compared to those based on turbulence arising from specific plasma instabilities, and provide a better framework for modeling features such as superdiffusion. The studies of space and laboratory plasmas as nonequilibrium systems have been motivated by features such as scaling and critical behavior, and have provided new insights by highlighting the properties that are common with other systems. Keywords Self-organized criticality Nonequilibrium systems Multiscale phenomena Turbulence Space plasmas Tokamaks

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700