Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance
详细信息    查看全文
  • 作者:Dong Liang ; Yimin Song ; Tao Sun ; Gang Dong
  • 关键词:Parallel manipulator ; Redundant actuation ; Topology ; Kinematic analysis ; Dynamic model ; Dynamic dimensional synthesis
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:83
  • 期:1-2
  • 页码:631-658
  • 全文大小:3,179 KB
  • 参考文献:1.Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Berlin (2006)
    2.Stefan, S., Liu, X.J., Wang, J.S.: Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn. 50(1鈥?), 1鈥?2 (2007)
    3.Wu, Jun, Wang, J.S., Li, T.M., Wang, L.P.: Performance analysis and application of a redundantly actuated parallel manipulator for milling. J. Intell. Robot. Syst. 50(2), 163鈥?80 (2007)CrossRef
    4.Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE. Trans. Robot. Autom. 6(3), 281鈥?90 (1990)CrossRef
    5.Collins, C.L., McCarthy, J.M.: The quartic singularity surfaces of planar platforms in the clifford algebra of projective plane. Mech. Mach. Theory 33(7), 931鈥?44 (1998)CrossRef MathSciNet
    6.Park, F.C., Kim, J.W.: Singularity analysis of closed kinematic chains. ASME J. Mech. Des. 121(3), 32鈥?8 (1999)CrossRef
    7.Firmani, F., Podhorodeski, R.P.: Singularity analysis of planar parallel manipulators based on forward kinematic solutions. Mech. Mach. Theory 44(7), 1386鈥?399 (2009)CrossRef
    8.Campos, L., Bourbonnais, F., Bonev, I.A., Bigras, P.: Development of a five-bar parallel robot with large workspace. In: Proceedings of the ASME 2010, International Design Engineering Technical Conferences, Montreal, Quebec, Canada (2010)
    9.Liu, G.F., Wu, Y.L., Li, Z.X.: Analysis and control of redundant parallel manipulators. In: Proceedings IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 3748鈥?754 (2001)
    10.Arsenault, M., Bourdeau, R.: The synthesis of three-degree-of-freedom planar parallel mechanisms with revolute joints (3-RRR) for an optimal singularity-free workspace. J. Robot. Syst. 21(5), 259鈥?74 (2004)CrossRef
    11.Macho, E., Altuzarra, O., Pinto, C., Hernandez, A.: Workspace associated to assembly modes of the 5R planar parallel manipulator. Robotica 26(3), 395鈥?03 (2008)CrossRef
    12.Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Workspace generation and planning singularity-free path for parallel manipulators. Mech. Mach. Theory 40(7), 776鈥?05 (2005)CrossRef MathSciNet
    13.Cheng, H., Yiu, Y.K., Li, Z.X.: Dynamics and control of redundantly actuated parallel manipulators. IEEE-ASME Trans. Mechatron. 8(4), 483鈥?91 (2003)CrossRef
    14.M眉ller, A.: Motion equations in redundant coordinates with application to inverse dynamics of constrained mechanical systems. Nonlinear Dyn. 67(4), 2527鈥?541 (2012)CrossRef
    15.M眉ller, A., Hufnagel, T.: Model-based control of redundantly actuated parallel manipulators in redundant coordinates. Robot. Auton. Syst. 60(4), 563鈥?71 (2012)CrossRef
    16.Shang, W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. 59(1鈥?), 61鈥?2 (2010)CrossRef MathSciNet
    17.Wang, L.P., Wu, Jun, Wang, J.S.: Dynamic formulation of a planar 3-DOF parallel manipulator with actuation redundancy. Comput. Integr. Manuf. 26(1), 67鈥?3 (2010)CrossRef
    18.Cheng, C., Xu, Wl, Shang, J.Z.: Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn. 79(2), 1235鈥?255 (2015)CrossRef
    19.Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Determination of the kinematically redundant active prismatic joint variable ranges of a planar parallel mechanism for singularity-free trajectories. Mech. Mach. Theory 44(5), 1032鈥?044 (2009)CrossRef
    20.Ebrahimi, I., Carretero, J.A., Boudreau, R.: Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica 26(3), 405鈥?13 (2008)CrossRef
    21.Kim, H.S.: Kinematically redundant parallel haptic device with large workspace. Int. J. Adv. Robot. Syst. 9(260), 1鈥? (2012)
    22.Li, R.Q., Dai, J.S.: Workspace atlas and stroke analysis of seven-bar mechanisms with the translation-output. Mech. Mach. Theory 47(1), 117鈥?34 (2012)CrossRef
    23.Alici, G.: An inverse position analysis of five-bar planar parallel manipulators. Robotica 20(2), 195鈥?01 (2002)CrossRef
    24.Gao, F., Zhang, X.Q., Zhao, Y.S., Wang, H.R.: A physical model of the solution space and the atlas of the reachable workspace for 2-DOF parallel planar manipulators. Mech. Mach. Theory 31(2), 173鈥?84 (1996)CrossRef
    25.Liu, X.J., Wang, J.S., Pritschow, G.: Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech. Mach. Theory 41(2), 145鈥?69 (2006)CrossRef MathSciNet
    26.Huang, T., Liu, S.T., Mei, J.P., Chetwynd, D.G.: Optimal design of a 2-DOF pick-and-place parallel robot using dynamic performance indices and angular constraints. Mech. Mach. Theory 70(12), 246鈥?53 (2013)CrossRef
    27.Cheng, L., Lin, Y., Hou, Z.G., Tan, M., Huang, J., Zhang, W.J.: Adaptive tracking control of hybrid machines: a closed-chain five-bar mechanism case. IEEE-ASME. Trans. Mech. 16(6), 1155鈥?163 (2011)CrossRef
    28.Zhang, L.J., Li, Y.Q., Huang, Z.: Analysis of the workspace and singularity of planar 2-DOF parallel manipulator with actuation redundancy. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, pp. 171鈥?76 (2006)
    29.Gosselin, C.M., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. ASME J. Mech. Des. 113(3), 220鈥?26 (1991)CrossRef
    30.Huang, T., Li, M., Li, Z.X., Chetwynd, D.G., Whitehouse, D.J.: Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index. IEEE Trans. Robot. Autom. 20(3), 538鈥?43 (2004)CrossRef
    31.Gao, Z., Zhang, D.: Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. IEEE Trans. Ind. Electron. 62(1), 423鈥?33 (2015)CrossRef
    32.Hu, J.P., Yan, X.Y., Ma, J., Qi, C.H., Francs, K., Mao, H.P.: Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot. Comput. Electron. Agric. 107, 64鈥?2 (2014)CrossRef
    33.Song, Y.M., Lian, B.B., Sun, T., Dong, G., Qi, Yang, Gao, H.: A novel five-degree-of-freedom parallel manipulator and its kinematic optimization. ASME J. Mech. Robot. 6(4), 041008 (2014)CrossRef
    34.Sun, T., Song, Y.M., Dong, G., Lian, B.B., Liu, J.P.: Optimal design of a parallel mechanism with three rotational degrees of freedom. Robot. Comput. Integr. Manuf. 28(4), 500鈥?08 (2012)CrossRef
    35.Lee, J.H., Nam, Y.J., Park, Mk: Kinematics and optimization of a 2-DOF parallel manipulator with a passive constraining leg and linear actuators. KSME. J. Mech. Sci. Technol. 24(1), 19鈥?3 (2010)CrossRef
    36.Liu, X.J., Wang, J.S.: A new methodology for optimal kinematic design of parallel mechanisms. Mech. Mach. Theory 42(9), 1210鈥?224 (2007)CrossRef
    37.Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127鈥?40 (2004)CrossRef
    38.Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. J. Dyn. Syst. Meas. Control 105(3), 131鈥?35 (1983)CrossRef
    39.Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3鈥? (1985)CrossRef MathSciNet
    40.Graettinger, T.J., Krogh, B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE Trans. Robot. Autom. 4(1), 60鈥?9 (1988)CrossRef
    41.Ma, O., Angeles, J.: The concept of dynamic isotropy and its applications to inverse kinematic and trajectory planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, pp. 481鈥?86 (1990)
    42.Li, M., Huang, T., Mei, J.P., Zhao, X.M., Chetwynd, D.G., Hu, S.J.: Dynamic formulation and performance comparison of the 3-DOF modules of two reconfigurable PKM-the Tricept and the TriVariant. J. Mech. Des. 127(6), 1129鈥?136 (2005)CrossRef
    43.Wu, J., Wang, L.P., You, Z.: A new method for optimum design of parallel manipulator based on kinematics and dynamics. Nonlinear Dyn. 61(4), 717鈥?27 (2010)CrossRef MathSciNet
    44.Zhang, L.M., Mei, J.P., Zhao, X.M., Huang, T.: Dimensional synthesis of the delta robot uing transmission angle constraints. Robotica 30(3), 343鈥?49 (2012)CrossRef
    45.Gallardo-Alvarado, J., Alici, G., P茅rez-Gonz谩lez, L.: A new family of constrained redundant parallel manipulators. Multibody Syst. Dyn. 23(1), 57鈥?5 (2010)CrossRef
    46.Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1鈥?), 467鈥?78 (2013)CrossRef MathSciNet
    47.Soltanpour, M.R., Otadolajam, P., Khooban, M.H.: Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci. Meas. Technol. 9(3), 322鈥?34 (2014)CrossRef
    48.Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space. Robotica 1鈥?0 (2015)
    49.Li, Y.M., Staicui, S.: Inverse dynamics of a 3-PRC parallel kinematic machine. Nonlinear Dyn. 67(2), 1031鈥?041 (2012)CrossRef
  • 作者单位:Dong Liang (1)
    Yimin Song (1)
    Tao Sun (1)
    Gang Dong (1)

    1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
A novel redundantly actuated parallel manipulator with multiple potential actuation modes is proposed in this paper to conquer the drawbacks of the traditional planar 5R parallel manipulator. Firstly, some feasible topology configurations are presented and then an optimum scheme was achieved through some selection criteria. Kinematic analysis indicates that the redundant actuation modes have remarkable advantage over the non-redundant actuation modes because the redundant actuation ones can completely conquer the type II singularities within the theoretical reachable workspace. To investigate the dynamics, the Lagrangian formulation is employed to establish the uniformly dynamic model of the proposed parallel manipulator with multiple actuation modes. Based upon the dynamic model, two global dynamic performance indices are proposed for minimization by taking into accounts both inertia and centrifugal/Coriolis effects. Finally, the dynamic dimensional synthesis is performed subject to geometric constraints and some kinematic performance constraints. By using this approach, the designer can obtain a set of optimum dimensional parameters satisfying both the kinematic and dynamic performance. This approach can be extended to the optimum design for other high-speed parallel manipulators, especially for the ones with multiple actuation modes. Keywords Parallel manipulator Redundant actuation Topology Kinematic analysis Dynamic model Dynamic dimensional synthesis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700