A simple process based on NH2- and CH3-terminated monolayers for low contact resistance and adherent Au electrode in bottom-contact OTFTs
详细信息    查看全文
  • 作者:Rahim Abdur ; Jeongeun Lim ; Kyunghoon Jeong…
  • 关键词:3 ; aminopropyltriethoxysilane (APS) ; octadecyltrichlorosilane (OTS) ; self ; assembled monolayer (SAM) ; atmospheric pressure plasma ; bottom contact ; organic thin film transistor (OTFT)
  • 刊名:Electronic Materials Letters
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:2
  • 页码:197-204
  • 全文大小:2,744 KB
  • 参考文献:1.Y. Diao, B. C.-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, and Z. Bao, Nat. Mater. 12, 665 (2013).CrossRef
    2.C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).CrossRef
    3.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).CrossRef
    4.I. Pang, H. Kim, S. Kim, K. Jeong, H. S. Jung, C. J. Yu, H. Soh, and J. Lee, Org. Electron. 11, 338 (2010).CrossRef
    5.Z. Bao, Adv. Mater. 12, 227 (2000).CrossRef
    6.A. R. Murphy and J. M. J. Frechet, Chem. Rev. 107, 1066 (2007).CrossRef
    7.M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter. 20, 184011 (2008).
    8.J. G. Park, R. Vasic, J. S. Brooks, and J. E. Anthony, J. Appl. Phys. 100, 044511 (2006).CrossRef
    9.H. E. Katz, Z. Bao, and S. L. Gilat, Acc. Chem. Res. 34, 359 (2001).CrossRef
    10.Y. Lee, M. Maniruzzaman, C. Lee, M. Lee, E.-G. Lee, and J. Lee, Electron. Mater. Lett. 9, 741 (2013).CrossRef
    11.H. W. Lee, S. J. Lee, J. R. Koo, E. S. Cho, S. J. Kwon, W. Y. Kim, J. Park, and Y. K. Kim, Electron. Mater. Lett. 9, 865 (2013).CrossRef
    12.M. S. Go, J.-M. Song, C. Kim, J. Lee, J. Kim, M. J. Lee, Electron. Mater. Lett. 11, 252 (2015).CrossRef
    13.J.-H. Jung, W. Y. Kim, D.-K. Kim, J.-H. Kwon, H. C. Lee, J.-H. Bae, Electron. Mater. Lett. 11, 246 (2015).CrossRef
    14.M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).CrossRef
    15.Y.-G Ha, J. D. Emery, M. J. Bedzyk, H. Usta, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 133, 10239 (2011).CrossRef
    16.R. Abdur, K. Jeong, M. J. Lee, and J. Lee, Org. Electron. 14, 1142 (2013).CrossRef
    17.I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).CrossRef
    18.A. Kahn, N. Koch, and W. Gao, J. Polym. Sci. Part B: Polym. Phys. 41, 2529 (2003).CrossRef
    19.K. Hong, J. W. Lee, S. Y. Yang, K. Shin, H. Jeon, S. H. Kim, C. Yang, and C. E. Park, Org. Electron. 9, 21 (2008).CrossRef
    20.H.-Y. Chen, I.-W. Wu, C.-T. Chen, S.-W. Liu, and C.-I. Wu, Org. Electron. 13, 593 (2012).CrossRef
    21.R. Abdur, Y. K. Lee, K. Jeong, H.-S. Nam, Y.-H. Kim, J. Kim, and J. Lee, Org. Electron. 26, 8 (2015).CrossRef
    22.Y.-L. Loo, T. Someya, K. W. Baldwin, Z. Bao, P. Ho, A. Dodabalapur, H. E. Katz, and J. A. Rogers, Proc. Natl. Acad. Sci. USA 99, 10252 (2002).CrossRef
    23.H. Kim, K. Jeong, C.-J. Yu, H.-S. Nam, H. Soh, and J. Lee, Solid State Electron. 67, 70 (2012).CrossRef
    24.P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, J. Appl. Phys. 91, 3010 (2002).CrossRef
    25.B. Jaeckel, J. B. Sambur, and B. A. Parkinson, J. Appl. Phys. 103, 063719 (2008).CrossRef
    26.M. Xu, M. Nakamura, M. Sakai, and K. Kudo, Adv. Mater. 19, 371 (2007).CrossRef
    27.S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004).CrossRef
    28.Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron. Dev. Lett. 18, 606 (1997).CrossRef
    29.M. L. Tang, T. Okamoto, and Z. Bao, J. Am. Chem. Soc. 128, 16002 (2006).CrossRef
    30.B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).CrossRef
    31.O. Acton, M. Dubey, T. Weidner, K. M. O’Malley, T.-W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma, and A. K.-Y. Jen, Adv. Func. Mater. 21, 1476 (2011).CrossRef
    32.D. J. Dunaway and R. L. McCarley, Langmuir 10, 3598 (1994).CrossRef
    33.R. A. Hatton, M. R. Willis, M. A. Chesters, and D. Briggs, J. Mater. Chem. 13, 722 (2003).CrossRef
    34.H. M. Stec, R. J. Williams, T. S. Jones, and R. A. Hatton, Adv. Func. Mater. 21, 1709 (2011).CrossRef
    35.M.-H. Lin, C.-F. Chen, H.-W. Shiu, C.-H. Chen, and S. Gwo, J. Am. Chem. Soc. 131, 10984 (2009).CrossRef
    36.S. Kim, T. W. Kwon, J. Y. Kim, H. Shin, J. G. Lee, and M. M. Sung, J. Korean Phys. Soc. 49, S736 (2006).
    37.W.-K. Kim and J.-L. Lee, Appl. Phys. Lett. 88, 262102 (2006).CrossRef
    38.C. Kim, B. Lee, H. J. Yang, H. M. Lee, J. G. Lee, and H. Shin, J. Korean Phys. Soc. 47, S417 (2005).
    39.W. B. Jensen, The Lewis Acid-Base Concepts: An Overview. John Wiley and Sons, New York (1980).
    40.P. Silberzan, L. Leger, D. Ausserre, and J. J. Benattar, Langmuir 7, 1647 (1991).CrossRef
    41.R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Ianotta, and G. G. Malliaras, Chem. Mater. 16, 4497 (2004).CrossRef
    42.H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, J. Am. Chem. Soc. 130, 10556 (2008).CrossRef
    43.C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80, 2501 (1996).CrossRef
    44.W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, Langmuir 21, 2260 (2005).CrossRef
    45.X.-H. Zhang and B. Kippelen, J. Appl. Phys. 104, 104504 (2008).CrossRef
    46.D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 024509 (2006).CrossRef
    47.J. Krüger, U. Bach, and M. Grätzel, Adv. Mater. 12, 447 (2000).CrossRef
    48.V. Vogel and D. Möbius, J. Colloid Interface Sci. 126, 408 (1988).CrossRef
    49.A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).CrossRef
  • 作者单位:Rahim Abdur (1)
    Jeongeun Lim (1)
    Kyunghoon Jeong (1)
    Mohammad Arifur Rahman (2)
    Jiyoung Kim (3)
    Jaegab Lee (1)

    1. School of Advanced Material Engineering, Kookmin University, Seoul, 02707, Korea
    2. Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
    3. Department of Materials Science & Engineering, The University of Texas at Dallas, Dallas, Texas, 75080-3021, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Condensed Matter Physics
    Electronics, Microelectronics and Instrumentation
    Optical and Electronic Materials
    Thermodynamics
    Characterization and Evaluation of Materials
  • 出版者:The Korean Institute of Metals and Materials, co-published with Springer Netherlands
  • ISSN:2093-6788
文摘
An efficient process for the low contact resistance and adherent source/drain Au electrode in bottom-contact organic thin film transistors (OTFTs) was developed. This was achieved by using two different surface-functional groups of self-assembled monolayers, 3-aminopropyltriethoxysilane (APS), and octadecyltrichlorosilane (OTS), combined with atmospheric-pressure (AP) plasma treatment. Prior to the deposition of Au electrode, the aminoterminated monolayer self-assembles on SiO2 dielectrics, enhancing the adhesion of Au electrode as a result of the acid-base interaction of Au with the amino-terminal groups. AP plasma treatment of the patterned Au electrode on the APS-coated surface activates the entire surface to form an OTS monolayer, allowing the formation of a high quality pentacene layer on both the electrode and active region by evaporation. In addition, negligible damage by AP plasma was observed for the device performance. The fabricated OTFTs based on the two monolayers by AP plasma treatment showed the mobility of 0.23 cm2/Vs, contact resistance of 29 kΩ-cm, threshold voltage of −1.63 V, and on/off ratio of 9.8 × 105, demonstrating the application of the simple process for robust and high-performance OTFTs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700