Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions
详细信息    查看全文
  • 作者:Yongjie Wang ; Fei Dang ; Huan Zhong…
  • 关键词:Methylmercury ; Sulfate ; Selenium ; Paddy soil
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:5
  • 页码:4602-4608
  • 全文大小:546 KB
  • 参考文献:Björnberg A, Håkanson L, Lundbergh K (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural-waters. Environ Pollut 49(1):53–61CrossRef
    Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z, Fu X (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China. Environ Sci Technol 42(1):326–332CrossRef
    Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464CrossRef
    Fulda B, Voegelin A, Kretzschmar R (2013) Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol 47(22):12775–12783CrossRef
    Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in fresh-water sediments. Environ Sci Technol 26(11):2281–2287CrossRef
    Gilmour CC, Riedel GS, Ederington MC, Bell JT, Benoit JM, Gill GA, Stordal MC (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern everglades. Biogeochemistry 40(2–3):327–345CrossRef
    Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M, Guyoneaud R (2015) Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hgcB gene expression in Desulfovibrio dechloroacetivorans BerOc1. Environ Sci Pollut Res 22(18):13764–13771CrossRef
    Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46(5):2715–2723CrossRef
    Han S, Obraztsova A, Pretto P, Deheyn DD, Gieskes J, Tebo BM (2008) Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Mar Chem 111(3–4):214–220CrossRef
    Hu Z, Xu C, Zhao Y, Wang T, Zhang H, Cao Z (2002) Dynamics of atmospheric sulphur deposition on rapeseed/rice rotation in selected area of South China. China Environ Sci 22(1):11–15 (in Chinese with English abstract)
    Jain R, Matassa S, Singh S, van Hullebusch ED, Esposito G, Lens PNL (2015) Reduction of selenite to elemental selenium nanoparticles by activated sludge. Environ Sci Pollut Res. doi:10.​1007/​s11356-015-5138-7
    Jayaweera GR, Biggar JW (1996) Role of redox potential in chemical transformations of selenium in soils. Soil Sci Soc Am J 60:1056–1063CrossRef
    Jin LJ, Guo P, Xu XQ (1999) Effect of selenium on mercury methylation in facultative lake sediments. Toxicol Environ Chem 69:255–61CrossRef
    Jonsson S, Skyllberg U, Nilsson MB, Westlund PO, Shchukarev A, Lundberg E, Björn E (2012) Mercury methylation rates for geochemically relevant HgII species in sediments. Environ Sci Technol 46(21):11653–11659CrossRef
    Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72(12):7919–7921CrossRef
    King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66(6):2430–2437CrossRef
    Li WC, Tse HF (2015) Health risk and significance of mercury in the environment. Environ Sci Pollut Res 22(1):192–201CrossRef
    Liang L, Horvat M, Feng X, Shang L, Li H, Pang P (2004) Re-evaluation of distillation and comparison with HNO3 leaching/solvent extraction for isolation of methylmercury compounds from sediment/soil samples. Appl Organomet Chem 18(6):264–270CrossRef
    Liu C, Cao S, Chen G, Wu X (1990) Sulphur in the agriculture of China. Acta Pedol Sin 27(4):398–404 (in Chinese with English abstract)
    Liu Y, Zheng Y, Zhang L, He J (2014) Linkage between community diversity of sulfate-reducing microorganisms and methylmercury concentration in paddy soil. Environ Sci Pollut Res 21(2):1339–1348CrossRef
    Meng B, Feng X, Qiu G, Cai Y, Wang D, Li P, Shang L, Sommar J (2010) Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem 58(8):4951–4958CrossRef
    Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11CrossRef
    Michael PS, Fitzpatrick R, Reid R (2015) The role of organic matter in ameliorating acid sulfate soils with sulfuric horizons. Geoderma 255–256:42–49CrossRef
    Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55(9):2333–2343
    Qiu G, Feng X, Meng B, Jonas S, Gu C (2012) Environmental geochemistry of an active Hg mine in Xunyang, Shaanxi province, China. Appl Geochem 27(12):2280–2288CrossRef
    Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Parkash S, Srivastatva MM (1996) Study of mercury-selenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem Toxicol 34(9):883–886CrossRef
    Skyllberg U, Drott A (2010) Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II)- an EXAFS study. Environ Sci Technol 44(4):1254–1259CrossRef
    St. Pierre KA, Chétélat J, Yumvihoze E, Poulain AJ (2014) Temperature and the sulfur cycle control monomethylmercury cycling in high arctic coastal marine sediments from Allen Bay, Nunavut, Canada. Environ Sci Technol 48(5):2680–2687CrossRef
    Truong HYT, Chen YW, Nelson B (2013) Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci Total Environ 449:373–384CrossRef
    Truong HYT, Chen YW, Saleh M, Nehzati S, George GN, Pickering IJ, Belzile N (2014) Proteomics of Desulfovibrio desulfuricans and X-ray absorption spectroscopy to investigate mercury methylation in the presence of selenium. Metallomics 6:465–475CrossRef
    Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31(3):241–293CrossRef
    Wang X, Ye Z, Li B, Huang L, Meng M, Shi J, Jiang G (2014a) Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. Environ Sci Technol 48(3):1878–1885CrossRef
    Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye Z (2014b) Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). Ann Bot 114(2):271–278CrossRef
    Weber FA, Voegelin A, Kretzschmar R (2009) Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 73(19):5513–5527CrossRef
    Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium, mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92CrossRef
    Zhang L, Jin Y, Lu J, Zhang C (2009) Concentration, distribution and bioaccumulation of mercury in the Xunyang mercury mining area, Shaanxi province, China. Appl Geochem 24(5):950–956CrossRef
    Zhang H, Feng X, Larssen T, Shang L, Li P (2010) Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain. Environ Sci Technol 44(12):4499–4504CrossRef
    Zhang H, Feng X, Zhu J, Sapkota A, Meng B, Yao H, Qin H, Larssen T (2012) Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.). Environ Sci Technol 46(18):10040–10046
    Zhang T, Kucharzyk KH, Kim B, Deshusses MA, Hsu-Kim H (2014) Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 48(16):9133–9141CrossRef
    Zhao J, Gao Y, Li Y, Hua Y, Peng X, Dong Y, Li B, Chen C, Chai Z (2013) Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environ Res 125:75–81CrossRef
    Zhao J, Li Y, Li Y, Gao Y, Li B, Hu Y, Zhao Y, Chai Z (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.) in correlation with mercury species and exposure level. Metallomics 6(10):1951–1957CrossRef
    Zhou J, Liu H, Du B, Shang L, Yang J, Wang Y (2015) Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.). Environ Sci Pollut Res 22(8):6144–6154CrossRef
    Zhu Y, Pilon-Smits EAH, Zhao F, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442CrossRef
  • 作者单位:Yongjie Wang (1)
    Fei Dang (2)
    Huan Zhong (1) (3)
    Zhongbo Wei (1)
    Ping Li (4)

    1. State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People’s Republic of China
    2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People’s Republic of China
    3. Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada
    4. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700