Simulation study of the effect of water removal from Fischer–Tropsch products on the process performance using a hydrophilic membrane reactor
详细信息    查看全文
  • 作者:Dounia Alihellal ; Lemnouer Chibane
  • 关键词:Syngas ; Fischer–Tropsch Synthesis ; Liquid hydrocarbons ; Hydrophilic membrane reactor ; Iron based catalyst
  • 刊名:Reaction Kinetics, Mechanisms and Catalysis
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:117
  • 期:2
  • 页码:605-621
  • 全文大小:1,061 KB
  • 参考文献:1.Kang SH, Bae JW, Woo KJ, Prasad PSS, Jun KW (2010) Fuel Process Technol 91:399–403CrossRef
    2.Sari A (2014) Chem Eng J 244:317–326CrossRef
    3.Shin MS, Park N, Park MJ, Cheon JY, Kang JK, Jun KW, Ha KS (2014) Fuel Process Technol 118:235–243CrossRef
    4.Zolfaghari Z, Tavasoli A, Tabyar S, Pour AN (2014) J Energy Chem 23:57–65CrossRef
    5.Shimura K, Miyazawa T, Hanaoka T, Hirata S (2014) Appl Catal A Gen 475:1–9CrossRef
    6.Kwack SH, Park MJ, Bae JW, Ha KS, Jun KW (2011) React Kinet Mech Catal 104:483–502CrossRef
    7.Pour AN, Khodabandeh H, Izadyar M, Housaindokht MR (2014) React Kinet Mech Catal 111:29–44CrossRef
    8.Kang SH, Koo HM, Kim AR, Lee DH, Ryu JH, Yoo YD, Bae JW (2013) Fuel Process Technol 109:141–149CrossRef
    9.Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744CrossRef
    10.Fu T, Jiang Y, Lv J, Li Z (2013) Fuel Process Technol 110:141–149CrossRef
    11.Rohde MP, Schaub G, Khajavi S, Jansen JC, Kapteijn F (2008) Microporous Mesoporous Mater 115:123–136CrossRef
    12.Dalai AK, Das TK, Chaudhari KV, Jacobs G, Davis BH (2005) Appl Catal A Gen 289:135–142CrossRef
    13.Espinoza RL, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S (2000) Stud Surf Sci Catal 130:389–395CrossRef
    14.Bayat M, Rahimpour MR, Moghtaderi B (2011) J Nat Gas Sci Eng 3:555–570CrossRef
    15.Iliuta I, Larachi F, Fongarland P (2010) Ind Eng Chem Res 49:6870–6877CrossRef
    16.Arabpour M, Rahimpour MR, Iranshahi D, Raeissi S (2012) J Nat Gas Sci Eng 9:209–219CrossRef
    17.Rahimpour MR, Mirvakili A (2013) J Ind Eng Chem 19:508–522CrossRef
    18.Marvast A, Sohrabi M, Zarrinpashneh S, Baghmisheh Gh (2005) Chem Eng Technol 28:78–86CrossRef
    19.Mazzone LCA, Fernandes FAN (2006) Latin Am Appl Res 36:141–148
    20.Fogler HS (2004) Elements of chemical reaction engineering. Prentice-Hall of India, New Delhi
    21.Rahimpour MR, Jokar SM, Jamshidnejad Z (2012) Chem Eng Res Des 90:383–396CrossRef
    22.Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR (2013) Catal Today 216:111–116CrossRef
    23.Wang YN, Xu YY, Xiang HW, Li YW, Zhang BJ (2001) Ind Eng Chem Res 40:4324–4335CrossRef
    24.Rahmati M, Mehdi M, Soleiman MB (2001) Can J Chem Eng 79:800–804CrossRef
    25.Rohde MP (2010) In-situ H2O removal via hydrophilic membranes during Fischer–Tropsch and other fuel-related synthesis reaction. KIT Scientific Publishing, Karlsruhe
    26.Fernandes FAN, Teles UM (2007) Fuel Process Technol 88:207–214CrossRef
    27.Bayat M, Rahimpour MR (2012) J Nat Gas Sci Eng 9:73–85CrossRef
    28.Fernandes FAN (2007) J Nat Gas Chem 16:107–114CrossRef
    29.Jager B, Espinoza RL (1995) Catal Today 23:17–28CrossRef
    30.Feyzi M, Jafari F (2012) Fuel Chem Technol 40:550–557CrossRef
    31.Jung H, Yang JI, HoonYang J, Lee HT, HyunChun D, Kim HJ (2010) Fuel Process Technol 91:1839–1844CrossRef
  • 作者单位:Dounia Alihellal (1)
    Lemnouer Chibane (1)

    1. Laboratoire de Génie des Procédés Chimiques (LGPC), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif 1, UN1901, Sétif, Algeria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Industrial Chemistry and Chemical Engineering
    Physical Chemistry
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1878-5204
文摘
In this study, a mathematical model describing Fischer–Tropsch synthesis over an iron catalyst carried out in two configurations of membrane reactors was developed to predict the process performance. For this purpose, the impact of water removal from the reaction side on syngas conversion and on hydrocarbons selectivity was theoretically analyzed and quantified under different operating conditions. The obtained main results reveal that the process can be intensified when the catalyst was packed in a single region, whereas the produced water was continuously removed from the reaction side to the permeate side, which is constituted of two identical and parallel regions. This configuration design is characterized by a sufficient large area, which can enable fast water removal by an adequate sweep-fluid flow rate. As a result, the conversion and product selectivity could be enhanced obviously at the suitable conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700