Use digital subtraction images of blue-light and near-infrared autofluorescence for the assessment of irregular foveal contour
详细信息    查看全文
  • 作者:Rui Hua ; Rita Gangwani ; Limin Liu ; Lei Chen
  • 关键词:Subtraction images ; Blue ; light autofluorescence ; Near ; infrared autofluorescence ; Spectral domain optical coherence tomography
  • 刊名:Lasers in Medical Science
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:30
  • 期:1
  • 页码:445-451
  • 全文大小:718 KB
  • 参考文献:1. Hassenstein A, Meyer CH (2009) Clinical use and research applications of Heidelberg retinal angiography and spectral domain optical coherence tomography—a review. Clin Exp Ophthalmol 37:130-43 CrossRef
    2. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK (2000) Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(2):496-04
    3. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30(8):1691-699
    4. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36(3):718-29
    5. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385-09 CrossRef
    6. Reinboth J, Gautschi K, Munz K, Eldred GE, Remé CE (1997) Lipofuscin in the retina: quantitative assay for an unprecedented autofluorescent compound (pyridinium bis-retinoid, A2-E) of ocular age pigment. Exp Eye Res 65:639-43 CrossRef
    7. Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47:3556-564 CrossRef
    8. Spaide RF, Klancnik JM Jr (2005) Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 112:825-33 CrossRef
    9. Snodderly DM, Auran JD, Delori FC (1984) The macularpigment.II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25:674-85
    10. Trieschmann M, van Kuijk FJ, Alexander R, Hermans P, Luthert P, Bird AC et al (2008) Macular pigment in the human retina: histological evaluation of localization and distribution. Eye 22:132-37 CrossRef
    11. Weiter JJ, Delori FC, Wing G, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145-52
    12. 12.Gabel V-P, Birngruber R, Hillenkamp F. (1978) Visible and near infrared light absorption in pigment epithelium and choroid. In: Shimuzu K, OsterhuisJAs, eds. XXIII Conrilium Ophthalmol Kyoto, Exerpta Medica. Amsterdam: Oxford 658-62.
    13. Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783-91 CrossRef
    14. Kayatz P, Thumann G, Luther TT et al (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42:241-46
    15. Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigmentlike fluorophores. Free Radic Biol Med 21:871-88 CrossRef
    16. Keilhauer CN, Delori FC (2006) Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 47(8):3556-564 CrossRef
    17. Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17:583-00
    18. Duncker T, Tabacaru MR, Lee W, Tsang SH, Sparrow JR, Greenstein VC (2013) Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci 54(1):585-91 CrossRef
    19. Solbach U, Keilhauer C, Knabben H, Wolf S (1997) Imaging of retinal autofluorescence in patients with age-related macular degeneration. Retina 17:385-89 CrossRef
    20. Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2:552-77
文摘
The aims of this study are to generate subtraction images of blue-light autofluorescence (BL-AF) and near-infrared autofluorescence (NIR-AF) from normal eyes, eyes with full thickness macular holes, and eyes with irregular foveal contour, and to compare their autofluorescence patterns. This retrospective study included 44 normal eyes of 22 health individuals, 32 eyes with full thickness macular holes of 32 patients, and 36 eyes with irregular foveal contour of 36 patients. BL-AF and NIR-AF were obtained from all patients and used to generate subtraction images using the Image J software. The decreased signal of central patch was recorded. The central foveal thickness (CFT) and outer nucleus layer (ONL) thickness of fovea were measured to calculate the ONL thickness/CFT ratio. The subtraction images showed regularly increased signal in the central macula of all normal eyes. In contrast, decreased signal of central patch was detected in all full thickness macular holes eyes and 26 out of 36 eyes with irregular foveal contour. No significant difference of the ONL thickness/CFT ratio (F--.32, P--.113) was observed between normal and irregular foveal contour eyes with or without decreased signal of central patch. Both regularly increased signal and decreased signal of central patch were detected in the eyes with irregular foveal contour. Our results suggest that subtraction images are useful for the assessment of certain macular conditions by providing supplementary information to the green-light autofluorescence and BL-AF.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700