LS-SVM-based image segmentation using pixel color-texture descriptors
详细信息    查看全文
  • 作者:Hong-Ying Yang (1)
    Xian-Jin Zhang (1)
    Xiang-Yang Wang (1) (2)
  • 关键词:Image segmentation ; Least squares support vector machine ; Human visual attention ; Local texture content ; Arimoto entropy thresholding
  • 刊名:Pattern Analysis & Applications
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:17
  • 期:2
  • 页码:341-359
  • 全文大小:3,314 KB
  • 参考文献:1. Dana E, Paul F (2011) Image segmentation based on the integration of color-texture descriptors: a review. Pattern Recognit 44(10-1):2479-501
    2. Francisco JE, Allan DJ (2009) Benchmarking image segmentation algorithms. Int J Comput Vis 85(2):167-81 CrossRef
    3. Ciesielski KC, Udupa JK (2011) A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks. Comput Vis Image Underst 115(6):721-34 CrossRef
    4. Unnikrishnan R, Pantofaru CE, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929-43 CrossRef
    5. Tan KS, Isa NAM (2011) Color image segmentation using histogram thresholding—Fuzzy C-means hybrid approach. Pattern Recognit 44(1):1-5 CrossRef
    6. Gao H, Xu W, Sun J, Tang Y (2010) Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE Trans Instrum Meas 59(4):934-46 CrossRef
    7. Gon?alves H, Gon?alves JA, Corte-Real L (2011) Method for automatic image registration through histogram-based image segmentation. IEEE Trans Image Process 20(3):776-89 CrossRef
    8. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603-19 CrossRef
    9. Awad M, Chehdi K, Nasri A (2009) Multi-component image segmentation using a hybrid dynamic genetic algorithm and fuzzy C-means. IET Image Proc 3(2):52-2 CrossRef
    10. Christoudias C, Georgescu B, Meer P (2002) Synergism in low-level vision. The 16th international conference on pattern recognition, Quebec City, August 2002, vol IV, pp 150-55
    11. Wang J, Ju LL, Wang XQ (2009) An edge-weighted centroidal voronoi tessellation model for image segmentation. IEEE Trans Image Process 18(8):1844-858 CrossRef
    12. Wang HZ, Oliensis J (2010) Generalizing edge detection to contour detection for image segmentation. Comput Vis Image Underst 114(7):731-44 CrossRef
    13. Ugarriza G, Saber L, Vantaram E et al (2009) Automatic image segmentation by dynamic region growth and multiresolution merging. IEEE Trans Image Process 18(10):2275-288 CrossRef
    14. Ning JF, Zhang L, Zhang D (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recognit 43(2):445-56 CrossRef
    15. Qin AK, Clausi DA (2010) Multivariate image segmentation using semantic region growing with adaptive edge penalty. IEEE Trans Image Process 19(8):22157-2170 CrossRef
    16. Panagiotakis C, Grinias I, Tziritas G (2011) Natural image segmentation based on tree equipartition, bayesian flooding and region merging. IEEE Trans Image Process 20(8):2276-287 CrossRef
    17. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222-239 CrossRef
    18. Salah MB, Mitiche A, Ayed IB (2011) Multiregion image segmentation by parametric kernel graph cuts. IEEE Trans Image Process 20(2):545-57 CrossRef
    19. Miranda PAV, Alexandre XF, Udupa JK (2010) Synergistic arc-weight estimation for interactive image segmentation using graphs. Comput Vis Image Underst 114(1):85-9 CrossRef
    20. Wang S, Siskind JM (2001) Image segmentation with minimum mean cut. IEEE international conference on computer vision (ICCV), Vancouver, pp 517-24
    21. Wang S, Siskind JM (2003) Image segmentation with ratio cut. IEEE Trans Pattern Anal Mach Intell 25(6):675-90 CrossRef
    22. Tosun AB, Gunduz-Demir C (2011) Graph run-length matrices for histopathological image segmentation. IEEE Trans Med Imaging 30(3):721-32 CrossRef
    23. Zhang L, Zeng Z, Ji Q (2011) Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation. IEEE Trans Image Process 20(9):2401-413 CrossRef
    24. Xu HX, Cao WH, Chen W (2008) Performance evaluation of SVM in image segmentation. The 9th international conference on signal processing (ICSP 2008), Beijing, 26-9 Oct, 2008, pp 1207-210
    25. Quan JJ, Wen XB (2008) Multiscale probabilistic neural network method for SAR image segmentation. Appl Math Comput 205(2):578-83 CrossRef
    26. Sowmya B, Rani BS (2011) Colour image segmentation using fuzzy clustering techniques and competitive neural network. Appl Soft Comput 11(3):3170-178 CrossRef
    27. Zhang L, Ji Q (2011) A Bayesian network model for automatic and interactive image segmentation. IEEE Trans Image Process 20(9):2582-593 CrossRef
    28. Wei S, Hong Q, Hou M (2011) Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 74(9):1485-491 CrossRef
    29. Cyganek B (2008) Color image segmentation with support vector machines: applications to road signs detection. Int J Neural Syst 18(4):339-45 CrossRef
    30. Yu Z, Wong HS, Wen G (2011) A modified support vector machine and its application to image segmentation. Image Vis Comput 29(1):29-0 CrossRef
    31. Xue Z, Long L, Antani S, Thoma GR, Jeronimo J (2009) Segmentation of mosaicism in cervicographic images using support vector machines. Proc SPIE Med Imaging 7259(1):72594X-2594X-10 CrossRef
    32. Wang XY, Wang T, Bu J (2011) Color image segmentation using pixel wise support vector machine classification. Pattern Recognit 44(4):777-87 CrossRef
    33. Juang CF, Chiu SH, Shiu SJ (2007) Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation. IEEE Trans Syst Man Cybern A 37(6):1077-087 CrossRef
    34. Mashford J, Rahilly M, Davisa P, Burn S (2010) A morphological approach to pipe image interpretation based on segmentation by support vector machine. Autom Constr 19(7):875-83 CrossRef
    35. Huang Jih-Jeng, Tzeng Gwo-Hshiung, Ong Chorng-Shyong (2007) Marketing segmentation using support vector clustering. Expert Syst Appl 32(2):313-17 CrossRef
    36. Bertelli L, Yu T, Vu D, Gokturk B (2001) Kernelized structural SVM learning for supervised object segmentation. 2011 IEEE conference on computer vision and pattern recognition (CVPR), Providence, RI, 20-5 June 2011, pp 2153-160
    37. Cyganek B (2010) Image segmentation with a hybrid ensemble of one-class support vector machines. Hybrid Artificial Intelligence Systems. Lect Notes Comput Sci 6076:254-61 CrossRef
    38. Chen YT, Chen CS (2008) Fast human detection using a novel boosted cascading structure with meta stages. IEEE Trans Image Process 17(8):1452-464 CrossRef
    39. Kim W, Jung C, Kim C (2010) Saliency detection: a self-ordinal resemblance approach. In: Proceedings of 2010 IEEE international conference on multimedia and expo (ICME), pp 1260-265
    40. Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089-101 CrossRef
    41. Jesmin F, Reza R, Shari MA (2009) A customized gabor filter for unsupervised color image segmentation. Image Vis Comput 27(4):489-01 CrossRef
    42. Paul R, Hill C, Nishan C, David R (2003) Image segmentation using a texture gradient based watershed transform. IEEE Trans Image Process 12(12):1618-633 CrossRef
    43. Sch?lkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge
    44. Zeng X, Chen X (2005) SMO-based pruning methods for sparse least squares support vector machines. IEEE Trans Neural Netw 16(6):1541-546 CrossRef
    45. Zhuo W, Cao ZG, Xiao Y (2009) Image thresholding based on two-dimensional Arimoto entropy. Pattern Recognit Artif Intell 22(2):208-13
    46. Fowlkes C, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530-49 CrossRef
    47. Shotton J, Winn JM, Rother C, Criminisi A (2006) TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Proceedings of the European conference on computer vision (ECCV), vol 1, pp 1-5
    48. Alpert RBS, Galun M, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Minnesota, pp 1-
  • 作者单位:Hong-Ying Yang (1)
    Xian-Jin Zhang (1)
    Xiang-Yang Wang (1) (2)

    1. School of Computer and Information Technology, Liaoning Normal University, Dalian, 116029, China
    2. State Key Laboratory of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1433-755X
文摘
Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. Moreover, the increasing demands of image analysis tasks in terms of segmentation results-quality introduce the necessity of employing multiple cues for improving image-segmentation results. In this paper, we present a least squares support vector machine (LS-SVM) based image segmentation using pixel color-texture descriptors, in which multiple cues such as edge saliency, color saliency, local maximum energy, and multiresolution texture gradient are incorporated. Firstly, the pixel-level edge saliency and color saliency are extracted based on the spatial relations between neighboring pixels in HSV color space. Secondly, the image pixel’s texture features, local maximum energy and multiresolution texture gradient, are represented via nonsubsampled contourlet transform. Then, both the pixel-level edge color saliency and texture features are used as input of LS-SVM model (classifier), and the LS-SVM model (classifier) is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained LS-SVM model (classifier). This image segmentation not only can fully take advantage of the human visual attention and local texture content of color image, but also the generalization ability of LS-SVM classifier. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700