A low phase noise 30-GHz frequency synthesizer with linear transconductance VCO and dual-injection-locked frequency divider
详细信息    查看全文
  • 作者:Dong-Soo Lee ; SungHun Cho ; SangYun Kim…
  • 关键词:Frequency synthesizer ; Linear transconductance voltage ; controlled oscillator ; Dual ; injection ; locked frequency divider ; Automatic frequency calibration ; Low phase noise
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:86
  • 期:3
  • 页码:365-376
  • 全文大小:1,920 KB
  • 参考文献:1.Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
    2.Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: next-generation wireless broadband technology [Invited Paper]. IEEE Wireless Communications, 17(3), 10–22.CrossRef
    3.IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-Wave-Based Alternative Physical Layer Extension, IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), Dec. 2009 (pp. c1–187).
    4.Niknejad, A. (2010). Siliconization of 60 GHz. IEEE Microwave Magagazine, 11(1), 78–85.CrossRef
    5.Hajimiri, A. (2009). The future of high frequency circuit design. In Proceeding of European Solid State Device Research Conference (pp. 64–71).
    6.Sadhu, B., Ferriss, M., Natarajan, A., Yaldiz, S., Plouchart, J. O., Rylyakov, A., et al. (2013). A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing. IEEE Journal of Solid-State Circuits, 48(5), 1138–1909.CrossRef
    7.Pinda de Gyvez, J., & Tuinhout, H. P. (2004). Threshold voltage mismatch and intra-die leakage current in digital CMOS circuits. IEEE Journal of Solid-State Circuits, 39(1), 157–168.CrossRef
    8.Lee, C., & Liu, S. (2007). A 58-to-60.4 GHz frequency synthesizer in 90 nm CMOS. IEEE ISSCC Digest of Technical Papers, 597, 196–197.
    9.Koo, Y., Huh, H., Cho, Y., Lee, J., Park, J., Lee, K., et al. (2002). A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS and cellular-CDMA wireless systems. IEEE Journal of Solid-State Circuits, 37(5), 536–542.CrossRef
    10.Craninckx, J., & Steyaert, M. (1998). A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE Journal of Solid-State Circuits, 33(12), 2054–2065.CrossRef
    11.Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.CrossRef
    12.Wu, C. Y., & Yu, C. Y. (2007). Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range. IEEE Transactions on Microwave Theory and Techniques, 55(8), 1649–1658.CrossRef
    13.Lee, J., & Razavi, B. (2004). A 40-GHz frequency divider in 0.18-μm CMOS technology. IEEE Journal of Solid-State Circuits, 39(4), 594–601.CrossRef
    14.Chuang, Y.-H., Lee, S.-H., Jang, S.-L., Chao, J.-J., & Juang, M.-H. (2006). A ring-oscillator-based wide locking range frequency divider. IEEE Microwave and Wireless Components Letters, 16(8), 470–472.CrossRef
    15.Musa, A., Okada, K., & Matsuzawa, A. (2011). A 20 GHz ILFD with locking range of 31% for divide-by-4 and 15% for divide-by-8 using progressive mixing. IEEE ASSCC, 2011, 85–88.
    16.Siriburanon, T., Wei, D., Musa, A., Okada, K., & Matsuzawa, A. (2013). A 13.2% locking-range divide-by-6, 3.1 mW, ILFD using even harmonic-enhanced direct injection technique for millimeter wave PLLs. In Proceedings of ESSCIRC, 2013 (pp. 403–406).
    17.Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43(12), 2716–2729.CrossRef
    18.Ham, D., & Hajimiri, A. (2001). Concepts and methods of optimization of integrated LC VCOs. IEEE Journal of Solid-State Circuits, 36(6), 896–909.CrossRef
    19.Kim, Y., Kim, J., Oh, J., Park, Y., Kim, J., Park, K., et al. (2009). Low-power CMOS synchronous counter with clock gating embedded into carry propagation. IEEE Transactions on Circuits and Systems-II, 56(8), 649–653.CrossRef
    20.Chen, C.-C., Wang, C.-H., Huang, B.-J., Tsao, H.-W., & Wang, H. (2007). A 24-GHz divide-by-4 injection-locked frequency divider in 0.13-μm CMOS technology. IEEE ASSCC, 2007, 340–343.
    21.Lee, D.-S., Jang, J.-H., Park, H.-G., Pu, Y. G., Hwang, K. C., Yang, Y., et al. (2015). A wide locking range, dual Injection locked frequency divider with automatic frequency calibration loop in 65 nm CMOS. IEEE Transactions on Circuits and Systems-II, 62(4), 327–331.CrossRef
    22.Luo, T.-N., & Chen, Y.-J. E. (2008). A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Transactions on Microwave Theory and Techniques, 56(3), 620–625.CrossRef
    23.Brandonisio, F., & Kennedy, M.-P. (2009). Comparison of ring and LC oscillator-based ILFDs in terms of phase noise, locking range, power consumption and quality factor. IEEE PRIME, 2009, 292–295.
    24.Kim, D., Kim, J., & Cho, C. (2008). A 94 GHz locking hysteresis-assisted and tunable CML static divider in 65 nm SOI CMOS. In IEEE ISSCC Digest of Technical Papers (pp. 460–461).
    25.Vaucher, C. S., Ferencic, I., Locher, M., Sedvallson, S., Voegeli, U., & Zhenhua, W. (2000). A family of low-power truly modular programmable dividers in standard 0.35-um CMOS technology. IEEE Journal of Solid-State Circuits, 35(7), 039–1045.CrossRef
    26.Musa, A., Murakami, R., Sato, T., Chaivipas, W., Okada, K., & Matsuzawa, A. (2011). A low phase noise quadrature injection locked frequency synthesizer for MM-wave applications. IEEE Journal of Solid-State Circuits, 46(11), 2635–2649.CrossRef
    27.Xu, Z., Gu, Q. J., Wu, Y.-C., Jian, H.-Y., & Chang, M.-C. F. (2011). A 70–78-GHz integrated CMOS frequency synthesizer for W-band satellite communications. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3206–3218.CrossRef
    28.Yi, X., Boon, C. C., Liu, H., Lin, J. F., Ong, J. C., & Lim, W. M. (2013). A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with in-phase injection coupled QVCO in 65 nm CMOS. In IEEE ISSCC Digest of Technical Papers (pp. 354–355).
  • 作者单位:Dong-Soo Lee (1)
    SungHun Cho (1)
    SangYun Kim (1)
    JaeYong Lee (2)
    KeumCheol Hwang (1)
    Youngoo Yang (1)
    Mun-Kyo Seo (1)
    YoungGun Pu (1)
    Kang-Yoon Lee (1)

    1. College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Korea
    2. Hubilon Co., Ltd, 1355-3, Seocho, Seoul, Korea
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
In this paper, a low phase noise 30-GHz frequency synthesizer with a linear transconductance voltage-controlled oscillator (VCO) and dual-injection-locked frequency divider (ILFD) is presented. In order to improve the phase noise of the frequency synthesizer, the LC VCO is designed with transconductance linearization of the active devices. A dual-ILFD is proposed in order to achieve a wide locking range with low power consumption. It is implemented in 65 nm CMOS and the die area is 1.2 mm × 0.8 mm. The power consumption is 55 mW from the supply voltage of 1 V. The measured phase noise of the VCO is respectively −106 and −97.88 dBc/Hz at a 1-MHz offset from carrier frequency of 30.24 and 60.48 GHz. The measured tuning range of the VCO is about 13 %. The locking frequency range of the ILFD is from 14.1 to 45.8 GHz at the injection power of −6 dBm, with its load current being controlled automatically. Keywords Frequency synthesizer Linear transconductance voltage-controlled oscillator Dual-injection-locked frequency divider Automatic frequency calibration Low phase noise

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700