Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton
详细信息    查看全文
  • 作者:Qian Bi ; Can-jun Yang
  • 关键词:Interaction force ; Adaptive control ; Exoskeleton ; Human ; machine interaction (HMI) ; Impedance ; TP242.3
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:15
  • 期:4
  • 页码:275-283
  • 全文大小:870 KB
  • 参考文献:Azzurra, C., Nicola, V., Francesco, G., et al., 2012. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron., 17(5):884鈥?94. [doi:10.1109/TMECH.2011.2144614]CrossRef
    Bi, Q., Yang, C.J., Deng, X.L., et al., 2013. Contacting mechanical impedance of human finger based on uncertain system. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1619鈥?624. [doi:10.1109/AIM.2013.6584328]
    Fang, H.G., Xie, Z.W., Liu, H., et al., 2009. An exoskeleton force feedback master finger distinguishing contact and non-contact mode. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1059鈥?064. [doi:10.1109/AIM.2009.5229726]
    Hogan, N., 1985. Impedance control: an approach to manipulation: part I-theory. J. Dynam. Syst. Meas. Contr., 107(1):1鈥?.MATH CrossRef
    Huo, W.G., Huang, J., Wang, Y.J., et al., 2011. Control of upper-limb power-assist exoskeleton based on motion intention recognition. Int. Conf. on Robotics and Automation, p.2243鈥?248. [doi:10.1109/ICRA.2011.5980483]
    Kamal, H.S., Hamid, M., Farrokh, J.S., 2010. Model reference adaptive control design for a teleoperation system with output prediction. J. Intell. Robot. Syst., 59:319鈥?39. [doi:10.1007/s10846-010-9400-4]MATH CrossRef
    Kamnik, R., Matko, D., Bajd, T., 1998. Application of model reference adaptive control to industrial robot impedance control. J. Intell. Robot. Syst., 22:153鈥?63. [doi:10.1023/A:1007932701318]MATH CrossRef
    Kiguchi, K., Hayashi, Y., 2012. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man. Cybern. B, 42:1064鈥?071. [doi:10.1109/TSMCB.2012.2185843]CrossRef
    Nakagawara, S., Kajimoto, H., Kawakami, N., et al., 2005. An encounter-type multi-fingered master hand using circuitous joints. Proc. IEEE Int. Conf. on Robotics and Automation, p.2667鈥?672. [doi:10.1109/ROBOT.2005.1570516]
    Nicosia, S., Tomei, P., 1984. Model reference adaptive control algorithms for industrial robots. Automatica, 20(5): 635鈥?44. [doi:10.1016/0005-1098(84)90013-X]MATH CrossRef
    Pang, Z.H., Chui, H., 2009. System Identification and Adaptive Control. Beijing University of Aeronautics and Astronautics Press, Beijing, p.78鈥?0 (in Chinese).
    Polotto, A., Modulo, F., Flumian, F., et al., 2012. Index finger rehabilitation/assistive device. 4th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.1518鈥?523. [doi:10.1109/BioRob.2012.6290676]
    Prange, G.B., Jannink M.J.A., Groothuis-Oudshoorn, C.G.M., et al., 2006. Systematic review of the effect of robotaided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Devel., 43(2):171鈥?83. [doi:10.1682/JRRD.2005.04.0076]CrossRef
    Schabowsky, C.N., Godfrey, S.B., Holley, R.J., et al., 2010. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. J. NeuroEng. Rehabil., 7:36. [doi:10.1186/1743-0003-7-36]CrossRef
    Seraji, H., Colbaugh, R., 1997. Force tracking in impedance control. Int. J. Robot. Res., 16(1):97鈥?17. [doi:10.1177/027836499701600107]CrossRef
    Takahashi, C.D., Der-Yeghiaian, L., Le, V., et al., 2008. Robot-based handmotor therapy after stroke. Brain, 131(2):425鈥?37. [doi:10.1093/brain/awm311]CrossRef
    Tjahyono, A.P., Aw, K.C., Devaraj, H., et al., 2013. A fivefingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors. Ind. Robot Int. J., 40(3):251鈥?60. [doi:10.1108/01439911311309951]CrossRef
    Ueki, S., Kawasakia, H., Itoa, S., et al., 2012. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans. Mechatron., 17(1):136鈥?46. [doi:10.1109/TMECH.2010.2090353]CrossRef
    Wege, A., Kondak, K., Hommel, G., 2006. Force control strategy or a hand exoskeleton based on sliding mode position control. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4615鈥?620. [doi:10.1109/IROS.2006.282169]
  • 作者单位:Qian Bi (1)
    Can-jun Yang (1)

    1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction (HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control (MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative (PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton. Key words Interaction force Adaptive control Exoskeleton Human-machine interaction (HMI) Impedance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700