Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput
详细信息    查看全文
  • 作者:Scott D. Novich ; David M. Eagleman
  • 关键词:Skin ; Vibrotactile ; Sound ; to ; touch ; Sensory substitution ; Information transfer
  • 刊名:Experimental Brain Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:233
  • 期:10
  • 页码:2777-2788
  • 全文大小:1,175 KB
  • 参考文献:Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadeen L (1969) Vision substitution by tactile image projection. Nature 221(5184):963-64. doi:10.-038/-21963a0 CrossRef PubMed
    Bensma?a SJ, Leung YY, Hsiao SS, Johnson KO (2005) Vibratory adaptation of cutaneous mechanoreceptive afferents. J Neurophysiol 94(5):3023-036. doi:10.-152/?jn.-0002.-005 PubMed Central CrossRef PubMed
    Bikah M, Hallbeck MS, Flowers JH (2008) Supracutaneous vibrotactile perception threshold at various non-glabrous body loci. Ergonomics 51(6):920-34. doi:10.-080/-014013070180934- CrossRef PubMed
    Brooks PL, Frost BJ, Mason JL, Gibson DM (1986a) Continuing evaluation of the Queen’s University Tactile Vocoder II: identification of open set sentences and tracking narrative. J Rehabil Res Dev 23(1):129-38PubMed
    Brooks PL, Frost BJ, Mason JL, Gibson DM (1986b) Continuing evaluation of the Queen’s University Tactile Vocoder. I: identification of open set words. J Rehabil Res Dev 23(1):119-28PubMed
    Cain WS (1973) Spatial discrimination of cutaneous warmth. Am J Psychol 86(1):169-81CrossRef PubMed
    Chamberlain MW (2001) A 600 bps MELP vocoder for use on HF channels. In: 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277), vol. 1. IEEE, p. 447-53. doi:10.-109/?MILCOM.-001.-85836
    Chebat D-R, Schneider FC, Kupers R, Ptito M (2011) Navigation with a sensory substitution device in congenitally blind individuals. NeuroReport 22(7):342-47. doi:10.-097/?WNR.-b013e3283462def-/span> CrossRef PubMed
    Cholewiak RW, Collins AA (1995) Vibrotactile pattern discrimination and communality at several body sites. Percept Psychophys, 57(5):724-37. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-644331
    Cholewiak RW, Craig JC (1984) Vibrotactile pattern recognition and discrimination at several body sites. Percept Psychophys, 35(6):503-14. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-483552
    Cohen B, Kirman JH (1986) Vibrotactile frequency discrimination at short durations. J Gen Psychol 113(2):179-86CrossRef PubMed
    Craig JC (1982) Temporal integration of vibrotactile patterns. Percept Psychophys, 32(3):219-29. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-177760
    Craig JC (2002) Identification of scanned and static tactile patterns. Percept Psychophys, 64(1):107-0. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-1916294
    Ellis EM, Robinson AJ (1993) A phonetic tactile speech listening system. Engineering, p. 1-7
    Enriquez M, Maclean KE (2008) Backward and common-onset masking of vibrotactile stimuli. Brain Res Bull 75(6):761-69. doi:10.-016/?j.?brainresbull.-008.-1.-18 CrossRef PubMed
    Evans PM, Craig JC (1991) Tactile attention and the perception of moving tactile stimuli. Percept Psychophys, 49(4):355-4. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-030933
    Galvin K, Mavrias G, Moore A, Cowan R, Blamey P, Clark G (1999) A comparison of tactaid II and tactaid 7 use by adults with a profound hearing impairment. Ear Hear 20(6):471CrossRef PubMed
    Galvin KL, Ginis J, Cowan RSC, Blamey PJ, Clark GM (2001) A comparison of a new prototype tickle talker?with the tactaid 7. Aust N Z J Audiol 23(1):18-6CrossRef
    Gault RH (1924) Progress in experiments on tactual interpretation of oral speech. J Abnorm Psychol Soc Psychol 19(2):155-59. doi:10.-037/?h0065752 CrossRef
    Geldard FA (1957) Adventures in tactile literacy. Am Psychol 12(3):115-24. doi:10.-037/?h0040416 CrossRef
    Geldard FA, Sherrick CE (1965) Multiple cutaneous stimulation: the discrimination of vibratory patterns. J Acoust Soc Am 37(5):797-01CrossRef PubMed
    Gescheider GA, Bolanowski SJ, Verrillo RT (2004) Some characteristics of tactile channels. Behav Brain Res 148(1-):35-0. doi:10.-016/?S0166-4328(03)00177-3 CrossRef PubMed
    Gleeson BT, Horschel SK, Provancher WR (2009) Communication of direction through lateral skin stretch at the fingertip. In: World Haptics 2009—Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 172-77. IEEE. doi:10.-109/?WHC.-009.-810804
    Goble AK, Hollins M (1994) Vibrotactile adaptation enhances frequency discrimination. J Acoust Soc Am 96(2):771. doi:10.-121/-.-10314 CrossRef PubMed
    Grosjean F (1979) A study of timing in a manual and a spoken language: American sign language and English. J Psycholinguist Res, 8(4):379-05. Retrieved from http://?www.?ncbi.?nlm.?nih.?gov/?pubmed/-90444
    Hayward V, Cruz-Hernandez JM (2000) Tactile display device using distributed lateral skin stretch. In: Proceedings of the Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium, ASME International Mechanical Engineering Congress & Exposition, p. 1309-314. Orlando
    Held R, Hein A (1963) Movement-produced stimulation in the development of visually guided
  • 作者单位:Scott D. Novich (1) (3)
    David M. Eagleman (1) (2) (3)

    1. Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
    3. Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
    2. Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
Touch receptors in the skin can relay various forms of abstract information, such as words (Braille), haptic feedback (cell phones, game controllers, feedback for prosthetic control), and basic visual information such as edges and shape (sensory substitution devices). The skin can support such applications with ease: They are all low bandwidth and do not require a fine temporal acuity. But what of high-throughput applications? We use sound-to-touch conversion as a motivating example, though others abound (e.g., vision, stock market data). In the past, vibrotactile hearing aids have demonstrated improvement in speech perceptions in the deaf. However, a sound-to-touch sensory substitution device that works with high efficacy and without the aid of lipreading has yet to be developed. Is this because skin simply does not have the capacity to effectively relay high-throughput streams such as sound? Or is this because the spatial and temporal properties of skin have not been leveraged to full advantage? Here, we begin to address these questions with two experiments. First, we seek to determine the best method of relaying information through the skin using an identification task on the lower back. We find that vibrotactile patterns encoding information in both space and time yield the best overall information transfer estimate. Patterns encoded in space and time or “intensity-(the coupled coding of vibration frequency and force) both far exceed performance of only spatially encoded patterns. Next, we determine the vibrotactile two-tacton resolution on the lower back—the distance necessary for resolving two vibrotactile patterns. We find that our vibratory motors conservatively require at least 6 cm of separation to resolve two independent tactile patterns (>80 % correct), regardless of stimulus type (e.g., spatiotemporal “sweeps-versus single vibratory pulses). Six centimeter is a greater distance than the inter-motor distances used in Experiment 1 (2.5 cm), which explains the poor identification performance of spatially encoded patterns. Hence, when using an array of vibrational motors, spatiotemporal sweeps can overcome the limitations of vibrotactile two-tacton resolution. The results provide the first steps toward obtaining a realistic estimate of the skin’s achievable throughput, illustrating the best ways to encode data to the skin (using as many dimensions as possible) and how far such interfaces would need to be separated if using multiple arrays in parallel. Keywords Skin Vibrotactile Sound-to-touch Sensory substitution Information transfer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700