Cloud Shading Effects on Characteristic Boundary-Layer Length Scales
详细信息    查看全文
  • 作者:G. L. Horn ; H. G. Ouwersloot ; J. Vilà-Guerau de Arellano…
  • 关键词:Atmospheric length scales ; Boundary ; layer length scales ; Cloud size ; Dynamic heterogeneity ; Large ; eddy simulation ; Shallow cumulus shading ; Surface–cloud coupling
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:157
  • 期:2
  • 页码:237-263
  • 全文大小:2,215 KB
  • 参考文献:Avissar R, Liu Y (1996) Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J Geophys Res 101:7499-518CrossRef
    Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55:2666-689CrossRef
    Baidya Roy S, Avissar R (2000) Scales of responce of the convective boundary layer to land-surface heterogeneity. Geophys Res Lett 27:533-36CrossRef
    Bonan GB (1995) Land–atmosphere interactions for climate system models: coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens Environ 51:57-3CrossRef
    Brenguier J, Burnet F, Geoffroy O (2011) Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentrations. Atmos Chem Phys 11:9771-786CrossRef
    Brown AR et al (2002) Large-eddy simulation fo the diurnal cycle of shallow cumulus convection over land. Q J R Meteorol Soc 128:1075-093CrossRef
    Camargo J, Kapos V (1995) Complex edge effects on soil moisture and microclimae in central amazonia forest. J Trop Ecol 11:205-21CrossRef
    Dawe JT, Austin PH (2012) Statistical analysis of an les shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos Chem Phys 12:1101-119CrossRef
    De Roode SR, Duynkerke PG, Jonker HJJ (2004) Large-eddy simulation: How large is large enough? J Atmos Sci 61:403-21CrossRef
    Deardorff J (1980) Stratocumulus-capped mixed layers derived from a three dimensional model. Boundary-Layer Meteorol 18:495-27CrossRef
    Deardorff JW, Willis GE (1985) Further results from a laboratory model of the convective planetary boundary layer. Boundary-Layer Meteorol 32:205-36CrossRef
    Dosio A, Vilà-Guerau de Arellano J, Holtslag A (2005) Relating eulerian and langrangian statistics for the turbulent dispersion in the atmospheric convective boundary layer. J Atmos Sci 62:1175-191CrossRef
    Golaz J, Jiang H, Cotton W (2001) A large-eddy simulation study of cumulus clouds over land and sensitivity to soil moisture. Atmos Res 59:373-92CrossRef
    Hellsten A, Zilitinkevich S (2013) Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol 149:323-53CrossRef
    Heus T, van Heerwaarden C, van der Dussen J, Ouwersloot H (2013) Overview of all namoptions in dales
    Heus T et al (2010) Formulation of and numerical studies with the Dutch atmospheric large-eddy simulation (DALES). Geosci Model Dev 3:415-45CrossRef
    Hinze O (1995) Turbulence. McGraw-Hill, New York, 790 pp
    Huang H, Margulis S (2013) Impact of soil moisture heterogeneity length-scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol Process 27:1988-003CrossRef
    Jiang H, Feingold G (2006) Effect of aerosol on warm convective clouds: aerosol-cloud-surface flux feedback in a new coupled large eddy model. J Geophys Res 111:D01 202
    Jiang H, Feingold G, Koren I (2009) Effect of aerosol on trade cumulus cloud morphology. J Geophys Res 114:D11 209CrossRef
    Jiang H, Zue H, Teller A, Feingold G, Levin Z (2006) Aerosol effects on the lifetime of shallow cumulus. Geophys Res Lett 33:L14 806CrossRef
    Jonker HJJ, Duynkerke PG, Cuijpers JWM (1999) Mesoscale fluctuations in scalars generated by boundary layer convection. J Atmos Sci 56:801-08CrossRef
    Joseph JH, Wiscombe WJ, Weinman JA (1976) The delta-Eddington approximation for radiative flux transfer. J Atmos Sci 33:2452-459CrossRef
    Karl T, Guenther A, Yokelson R, Greenberg J, Potosnak M, Blake D, Artaxo P (2007) The tropical forest and fire emissions experiment: emission chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. J Geophys Res 112:D18 302CrossRef
    Kolmogorov AN (1941) On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl Akad Nauk SSSR 31:538-41
    Kuang Z, Bretherton CS (2006) A mass-flux view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J Atmos Sci 63:1895-909CrossRef
    LeMone MA, Pennell WT (1976) The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. Mon Weather Rev 104:524-39CrossRef
    Lenschow DH, Stankov BB (1986) Length scales in the convective boundary layer. J Atmos Sci 43:1198-209CrossRef
    Lohou F, Patton E (2014) Land-surface and atmospheric response to shallow cumulus. J Atmos Sci 71:665-82CrossRef
    McFarlane S, Grabowski W (2007) Optical properties of shallow tropical cumuli derived from arm ground-based remote sensing. Geophys Res Lett 34:L06 808
    Neggers RAJ, Neelin JD, Stevens B (2007) Impact mechanisms of shallow cumulus convection on tropical climate dynamics. J Clim 20:2623-642CrossRef
    Neggers RAJ, Stevens B, Neelin JD (2006) A simple equilibrium model for shallow-cumulus-topped mixed layers. Theo
  • 作者单位:G. L. Horn (1)
    H. G. Ouwersloot (2)
    J. Vilà-Guerau de Arellano (1)
    M. Sikma (1)

    1. Meteorology and Air Quality Section, Wageningen University, Wageningen, The Netherlands
    2. Max Planck Institute for Chemistry, Mainz, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
We studied the effects of shading by shallow cumulus (shallow Cu) and the subsequent effect of inducing heterogeneous conditions at the surface on boundary-layer characteristics. We placed special emphasis on quantifying the changes in the characteristic length and time scales associated with thermals, shallow Cu and induced thermal circulation structures. A series of systematic numerical experiments, inspired by Amazonian thermodynamic conditions, was performed using a large-eddy simulation model coupled to a land-surface model. We used four different experiments to disentangle the effects of shallow Cu on the surface and the response of clouds to these surface changes. The experiments include a ‘clear case- ‘transparent clouds- ‘shading clouds-and a case with a prescribed uniform domain and reduced surface heat flux. We also performed a sensitivity study on the effect of introducing a weak background flow. Length and time scales were calculated using autocorrelation and two-dimensional spectral analysis, and we found that shading controlled by shallow Cu locally lowers surface temperatures and consequently reduces the sensible and latent heat fluxes, thus inducing spatial and temporal variability in these fluxes. The length scale of this surface heterogeneity is not sufficiently large to generate circulations that are superimposed on the boundary-layer scale, but the heterogeneity does disturb boundary-layer dynamics and generates a flow opposite to the normal thermal circulation. Besides this effect, shallow Cu shading reduces turbulent kinetic energy and lowers the convective velocity scale, thus reducing the mass flux. This hampers the thermal lifetime, resulting in a decrease in the shallow Cu residence time (from 11 to 7 min). This reduction in lifetime, combined with a decrease in mass flux, leads to smaller clouds. This is partially compensated for by a decrease in thermal cell size due to a reduction in turbulent kinetic energy. As a result, inter-cloud distance is reduced, leading to a larger population of smaller clouds, while maintaining cloud cover similar to the non-shading clouds experiment. Introducing a \(1\,\hbox {m}\, \hbox {s}^{-1}\) background wind speed increases the thermal size in the sub-cloud layer, but the diagnosed surface–cloud coupling, quantified by characteristic time and length scales, remains. Keywords Atmospheric length scales Boundary-layer length scales Cloud size Dynamic heterogeneity Large-eddy simulation Shallow cumulus shading Surface–cloud coupling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700