A high gain and high linearity 94 GHz CMOS up-conversion mixer using negative resistance compensation and simplified modified derivative superposition techniques
详细信息    查看全文
  • 作者:Yo-Sheng Lin ; Van Kien Nguyen…
  • 关键词:CMOS ; 94 GHz ; Up ; conversion mixer ; Conversion gain ; Balun ; LO ; RF isolation ; Simplified modified derivative superposition
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:86
  • 期:2
  • 页码:241-253
  • 全文大小:1,727 KB
  • 参考文献:1.Chen, A. Y.-K., Baeyens, Y., Chen, Y.-K., & Lin, J. (2011). An 80 GHz high gain double-balanced active up-conversion mixer using 0.18 μm SiGe BiCMOS technology. IEEE Microwave and Wireless Components Letters, 21(6), 222–326.
    2.Chen, A. Y.-K., Baeyens, Y., Chen, Y.-K., & Lin, J. (2010). A W-band highly linear SiGe BiCMOS double-balanced active up-conversion mixer using multi-tanh triplet technique. IEEE Microwave and Wireless Components Letters, 20(4), 220–222.CrossRef
    3.Lin, Y. S., & Wen, W.-C. (2014). Design and implementation of a w-band high-performance double-balanced active up-conversion mixer in 90 nm CMOS technology. Microwave and Optical Technology Letters, 56(8), 1812–1819.CrossRef
    4.Tsai, J. H. (2012). Design of 40-108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications. IEEE Transactions on Microwave Theory and Techniques, 60(3), 670–678.CrossRef
    5.Sheinman, B., Carmon, R., Ben-Yishay R., Katz, O., Mazor, N., Levinger, R., Elad, D., Golberg., A., & Bruetbrat, A. (2013). An active up-conversion mixer converting the entire 71-86 GHz E-band range in SiGe technology. In IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS).
    6.Levinger, R., Sheinman, B., Katz, O., Ben-Yishay, R., Carmon, R., Mazor, N., Bruetbrat, A., Elad, D., & Socher, E. (2014). A 71-86 GHz multi-tanh up-conversion mixer achieving +1 dBm OP1dB in 0.13 μm SiGe technolog. In IEEE MTT-S international microwave symposium (IMS).
    7.Carpenter, S., Abbasi, M., & Zirath, H. (2013). A 115-155 GHz quadrature up-converting MMIC mixer in InP DHBT technology. In 2013 European microwave integrated circuits conference (EuMIC) (pp. 113–116).
    8.Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., & Lu, S. S. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC
    anch wideband input matching network. In: IEEE transaction on microwave theory and techniques (Vol. 58, no. 2, pp. 287–296).
    9.Chang, J. F., & Lin, Y. S. (2011). A 0.99 mW 3-10 GHz CG CMOS UWB LNA using T-match input network and self-body-bias technique. IET Electronics Letters, 47(11), 658–659.CrossRef
    10.Doan, C. H., Emami, S., Niknejad, A. M., & Broderson, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40(1), 144–155.CrossRef
    11.Jain, V., Tzeng, F., Zhou, L., & Heydari, P. (2009). A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars. IEEE Journal of Solid-State Circuits, 44(12), 3469–3485.CrossRef
    12.Lee, S. J., Baek, T. J., Han, M., Choi, S. G., Ko, D. S., & Rhee, J. K. (2012). 94 GHz MMIC single balanced mixer for FMCW radar sensor application. Global Symposium on Millimeter Waves, 2012, 351–354.
    13.Wu, Y. C., Lin, S. K., Chiong, C. C., Tsai, Z. M., & Wang, H. (2011). A W-band image reject mixer for astronomical observation system. IEEE MTT-S International Microwave Symposium, 2011, 1–4.
    14.Zhao, W., Zhang, Y., & Zhan, M. Z. (2010). Design and performance of a W-Band microstrip rat-race balanced mixer. In International conference on microwave and millimeter wave technology (pp. 713–716).
    15.Baek, T. J., Ko, D. S., Lee, S. J., Baek, Y. H., Han, M., Choi, S. G., et al. (2011). A transceiver module for FMCW radar sensors using 94-GHz dot-type Schottky diode mixer. IEEE Sensors Journal, 11(2), 370–376.CrossRef
    16.Aparin, V., & Larson, L. E. (2005). Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Transactions on Microwave Theory and Techniques, 53(2), 571–581.CrossRef
    17.Yeh, P. C., Liu, W. C., & Chiou, H. K. (2005). Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun. IEEE Microwave and Wireless Components Letters, 15(2), 62–64.CrossRef
    18.El-Gharniti, O., Kerhervé, E., & Bégueret, J. B. (2007). Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Transactions on Microwave Theory and Techniques, 55(4), 607–615.CrossRef
    19.Long, J. R. (2000). Monolithic transformers for silicon RFIC design. IEEE Journal Solid-State Circuits, 35(9), 1368–1382.CrossRef
    20.Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21 ~ 29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques, 60(8), 2590–2604.CrossRef
  • 作者单位:Yo-Sheng Lin (1)
    Van Kien Nguyen (1)
    Chien-Chin Wang (1)
    Chih-Chung Chen (1)
    Yun-Wen Lin (1)
    Run-Chi Liu (1)
    Chien-Chu Ji (1)

    1. Department of Electrical Engineering, National Chi Nan University, Puli, Taiwan, ROC
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
A 94 GHz double-balanced mixer for direct up-conversion using 90 nm CMOS technology is reported. The mixer adopts an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and simplified modified derivative superposition in the transconductance stage for linearity improvement. In addition, an output buffer amplifier is included for loading effect suppression, CG enhancement and power consumption reduction. The mixer consumes 8.5 mW and achieves LO-port and RF-port input reflection coefficient better than −10 dB for frequencies of 81.4–110 GHz and 33.8–105.5 GHz, respectively. The mixer achieves maximal CG of 3.6 dB at 97 GHz, and CG of 2.1 ± 1.5 dB for frequencies of 77.5–100.2 GHz. That is, the corresponding 3 dB CG bandwidth is 22.7 GHz. In addition, the mixer achieves LO-RF isolation of 41.3 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation, power dissipation and matching bandwidth results are one of the best data ever reported for a W-band up-conversion mixer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700