A high-performance 94 GHz double-balanced up-conversion mixer for imaging radar sensors in 90 nm CMOS
详细信息    查看全文
  • 作者:Yo-Sheng Lin ; Van Kien Nguyen ; Run-Chi Liu…
  • 关键词:CMOS ; 94 GHz ; Up ; conversion mixer ; Negative resistance compensation
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:87
  • 期:1
  • 页码:21-33
  • 全文大小:1,464 KB
  • 参考文献:1.Chen, A. Y.-K., Baeyens, Y., Chen, Y.-K., & Lin, J. (2011). An 80 GHz high gain double-balanced active up-conversion mixer using 0.18 μm SiGe BiCMOS technology. IEEE Microwave and Wireless Components Letters, 21(6), 222–326.
    2.Chen, A. Y.-K., Baeyens, Y., Chen, Y.-K., & Lin, J. (2010). A W-band highly linear SiGe BiCMOS double-balanced active up-conversion mixer using multi-tanh triplet technique. IEEE Microwave and Wireless Components Letters, 20(4), 220–222.CrossRef
    3.Chiu, H. W., Lu, S. S., & Lin, Y. S. (2005). A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption on a thin (20 μm) substrate. IEEE Transaction on Microwave Theory and Techniques, 53(3), 813–824.CrossRef
    4.Wang, T., Chen, H. C., Chiu, H. W., Lin, Y. S., Huang, G. W., & Lu, S. S. (2006). Micromachined CMOS LNA and VCO by CMOS compatible ICP deep trench technology. IEEE Transaction on Microwave Theory and Techniques, 54(2), 580–588.CrossRef
    5.Lin, Y. S., Wen, W. C., & Wang, C. C. (2014). 13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation. IEEE Microwave and Wireless Components Letters, 24(1), 495–497.
    6.Doan, C. H., Emami, S., Niknejad, A. M., & Broderson, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40(1), 144–155.CrossRef
    7.Jain, V., Tzeng, F., Zhou, L., & Heydari, P. (2009). A Single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars. IEEE Journal of Solid-State Circuits, 44(12), 3469–3485.CrossRef
    8.Wu, Y. C., Lin, S. K., Chiong, C. C., Tsai, Z. M., & Wang H. (2011) A W-band image reject mixer for astronomical observation system, IEEE MTT-S International Microwave Symposium, pp. 1–4.
    9.Zhao, W., Zhang, Y., & Zhan M. Z.(2010). Design and performance of a W-band microstrip rat-race balanced mixer, In International Conference on Microwave and Millimeter Wave Technology, pp. 713–716.
    10.Lee S. J., Baek T. J., Han M., Choi S. G., Ko D. S., & Rhee J. K. (2012). 94 GHz MMIC single balanced mixer for FMCW radar sensor application, Global Symposium on Millimeter Waves, pp. 351–354.
    11.Baek, T. J., Ko, D. S., Lee, S. J., Baek, Y. H., Han, M., Choi, S. G., et al. (2011). A transceiver module for FMCW radar sensors using 94-GHz dot-type schottky diode mixer. IEEE Sensors Journal, 11(2), 370–376.CrossRef
    12.Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques, 60(8), 2590–2604.CrossRef
    13.Yeh, P. C., Liu, W. C., & Chiou, H. K. (2005). Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun. IEEE Microwave and Wireless Components Letters, 15(2), 62–64.CrossRef
    14.El-Gharniti, O., Kerhervé, E., & Bégueret, J. B. (2007). Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Transactions on Microwave Theory and Techniques, 55(4), 607–615.CrossRef
    15.Long, J. R. (2000). Monolithic transformers for silicon RFIC design. IEEE Journal Solid-State Circuits, 35(9), 1368–1382.CrossRef
  • 作者单位:Yo-Sheng Lin (1)
    Van Kien Nguyen (1)
    Run-Chi Liu (1)
    Chien-Chin Wang (1)
    Chien-Chu Ji (1)

    1. Department of Electrical Engineering, National Chi Nan University, Puli, Taiwan, ROC
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of −17.8 to −38.7 dB and RF-port input reflection coefficient of −16.8 to −27.9 dB for frequencies of 90–100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1 ± 1.5 dB for frequencies of 91.9–99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700