A review of state-of-the-art and proposal for high frequency inductive step-down DC–DC converter in advanced CMOS
详细信息    查看全文
  • 作者:Florian Neveu ; Bruno Allard…
  • 关键词:DC–DC conversion ; High frequency ; CMOS ; State ; of ; the ; art ; Low voltage ; Buck
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:87
  • 期:2
  • 页码:201-211
  • 全文大小:1,444 KB
  • 参考文献:1.Abedinpour, S., Bakkaloglu, B., & Kiaei, S. (2007). A multistage interleaved synchronous buck converter with integrated output filter in 0.18 μm SiGe process. IEEE Transactions on Power Electronics, 22(6), 2164–2175. doi:10.​1109/​TPEL.​2007.​909288 .CrossRef
    2.Alimadadi, M., Sheikhaei, S., Lemieux, G., Mirabbasi, S., Dunford, W., & Palmer, P. (2009). A fully integrated 660 MHz low-swing energy-recycling DC–DC converter. IEEE Transactions on Power Electronics, 24(6), 1475–1485. doi:10.​1109/​TPEL.​2009.​2013624 .CrossRef
    3.Bathily, M., Allard, B., & Hasbani, F. (2012). A 200-MHz integrated buck converter with resonant gate drivers for an RF power amplifier. IEEE Transactions on Power Electronics, 27(2), 610–613. doi:10.​1109/​TPEL.​2011.​2119380 .CrossRef
    4.Bergveld, H., Nowak, K., Karadi, R., Iochem, S., Ferreira, J., Ledain, S., Pieraerts, E., Pommier, M. (2009). A 65-nm-CMOS 100-MHz 87%-efficient DC–DC down converter based on dual-die system-in-package integration. In: Energy conversion congress and exposition, 2009. ECCE 2009. IEEE, pp. 3698–3705. DOI 10.1109/ECCE.2009.5316334.
    5.Blanken, P., Karadi, R., Bergveld, H. (2008). A 50MHz bandwidth multi-mode PA supply modulator for GSM, EDGE and UMTS application. In: Radio frequency integrated circuits symposium, 2008. RFIC 2008. IEEE, pp. 401–404. DOI 10.1109/RFIC.2008.4561463.
    6.Burton, E., Schrom, G., Paillet, F., Douglas, J., Lambert, W., Radhakrishnan, K., Hill, M. (2014). FIVR - Fully integrated voltage regulators on 4th generation Intel Core SoCs. In: Applied power electronics conference and exposition (APEC), 2014 29th annual IEEE, pp. 432–439. DOI 10.1109/APEC.2014.6803344.
    7.Gong, X., Ni, J., Hong, Z., Liu, B. (2011). An 80% Peak efficiency, 0.84 mW sleep power consumption, fully-integrated DC–DC converter with Buck/LDO mode control. In: Custom integrated circuits conference (CICC), 2011 IEEE, pp. 1–4. DOI 10.1109/CICC.2011.6055338.
    8.Hannon, J., Foley, R., Griffiths, J., O’Sullivan, D., McCarthy, K., Egan, M. (2009). A 20 MHz 200–500 mA monolithic buck converter for RF applications. In: Applied power electronics conference and exposition, 2009. APEC 2009. 24th Annual IEEE, pp. 503–508. DOI 10.1109/APEC.2009.4802705.
    9.Hazucha, P., Schrom, G., Hahn, J., Bloechel, B., Hack, P., Dermer, G., et al. (2005). A 233-MHz 80%87% efficient four-phase DCDC converter utilizing air-core inductors on package. IEEE Journal of Solid-State Circuits, 40(4), 838–845. doi:10.​1109/​JSSC.​2004.​842837 .CrossRef
    10.Huang, C., Mok, P.: A 100 MHz 82.4% Efficiency Package-Bondwire Based Four-Phase Fully-Integrated Buck Converter With Flying Capacitor for Area Reduction. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, pp. 362–363 (2013). DOI 10.1109/ISSCC.2013.6487770.
    11.Ishida, K., Takemura, K., Baba, K., Takamiya, M., Sakurai, T.: 3D Stacked Buck Converter with 15 μm Thick Spiral Inductor on Silicon Interposer for Fine-Grain Power-Supply Voltage Control in SiP’s. In: 3D Systems Integration Conference (3DIC), 2010 IEEE International, pp. 1–4 (2010). DOI 10.1109/3DIC.2010.5751437.
    12.Kim, W., Brooks, D., & Wei, G. Y. (2012). A fully-integrated 3-Level DC–DC converter for nanosecond-scale DVFS. IEEE Journal of Solid-State Circuits, 47(1), 206–219. doi:10.​1109/​JSSC.​2011.​2169309 .CrossRef
    13.Krishnamurthy, H., Vaidya, V., Kumar, P., Matthew, G., Weng, S., Thiruvengadam, B., Proefrock, W., Ravichandran, K., De, V.: A 500 MHz, 68% Efficient, Fully On-Die Digitally Controlled Buck Voltage Regulator on 22 nm Tri-Gate CMOS. In: VLSI Circuits Digest of Technical Papers, 2014 Symposium on, pp. 1–2 (2014). DOI 10.1109/VLSIC.2014.6858438.
    14.Kudva, S., & Harjani, R. (2011). Fully-integrated on-chip DC–DC converter with a 450X output range. IEEE Journal of Solid-State Circuits, 46(8), 1940–1951. doi:10.​1109/​JSSC.​2011.​2157253 .CrossRef
    15.Lallemand, F., Voiron, F.: Silicon Interposers with Integrated Passive Devices, an Excellent Alternative to Discrete Components. In: Microelectronics Packaging Conference (EMPC), 2013 European, pp. 1–6 (2013).
    16.Li, P., Bhatia, D., Xue, L., & Bashirullah, R. (2011). A 90–240 MHz hysteretic controlled DC–DC buck converter with digital PLL synchronization. IEEE Journal of Solid-State Circuits, 46(9), 2108–2119. doi:10.​1109/​JSSC.​2011.​2139550 .CrossRef
    17.Li, Q. (2012). A fully-integrated buck converter design and implementation for on-chip power supplies. Journal of Computers, 7(5), 1270–1277. doi:10.​4304/​jcp.​7.​5.​1270-1277 .
    18.Lu, D., Yu, J., Hong, Z., Mao, J., Zhao, H. (2012). A 1500 mA, 10 MHz on-time controlled buck converter with ripple compensation and efficiency optimization. In: Applied power electronics conference and exposition (APEC), 2012 27th Annual IEEE, pp. 1232–1237. DOI 10.1109/APEC.2012.6165976.
    19.Maity, A., Patra, A., Yamamura, N., Knight, J. (2011). Design of a 20 MHz DC-DC buck converter with 84% efficiency for portable applications. In: 24th International Conference on VLSI Design (VLSI Design), pp. 316–321. DOI 10.1109/VLSID.2011.37.
    20.Mathuna, S., O’Donnell, T., Wang, N., & Rinne, K. (2005). Magnetics on silicon: An enabling technology for power supply on chip. IEEE Transactions on Power Electronics, 20(3), 585–592.CrossRef
    21.Onizuka, K., Kawaguchi, H., Takamiya, M., Sakurai, T.: Stacked-chip implementation of on-chip buck converter for power-aware distributed power supply systems. In: Solid-State Circuits Conference, 2006. ASSCC 2006. IEEE Asian, pp. 127–130 (2006). doi:10.​1109/​ASSCC.​2006.​357868
    22.Ostman, K., Jarvenhaara, J., Broussev, S., Viitaniemi, I.: A 3.6-to-1.8-V Cascode Buck Converter With a Stacked LC Filter in 65-nm CMOS. Circuits and Systems II: IEEE Transactions on Express Briefs, PP(99), 1–5 (2014). doi:10.​1109/​TCSII.​2014.​2304875
    23.Peng, H., Anderson, D., & Hella, M. (2013). A 100 MHz two-phase four-segment DC–DC converter with light load efficiency enhancement in 0.18 \({{\mu }}\) m CMOS. IEEE Trans. Circuits Syst. I, 60(8), 2213–2224. doi:10.​1109/​TCSI.​2013.​2239157 .CrossRef
    24.Peng, H., Pala, V., Wright, P., Chow, T., & Hella, M. (2011). High efficiency, high switching speed, AlGaAs/GaAs P-HEMT DCDC converter for integrated power amplifier modules. Analog Integr. Circuits Signal Process., 66, 331–348. doi:10.​1007/​s10470-010-9543-z .CrossRef
    25.Schrom, G., Hazucha, P., Hahn, J., Gardner, D., Bloechel, B., Dermer, G., Narendra, S., Karnik, T., De, V.: A 480-MHz, Multi-Phase Interleaved Buck DC-DC Converter with Hysteretic Control. In: Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 6, pp. 4702–4707 Vol. 6 (2004). doi:10.​1109/​PESC.​2004.​1354830
    26.Schrom, G., Hazucha, P., Paillet, F., Rennie, D.J., Moon, S.T., Gardner, D.S., Kamik, T., Sun, P., Nguyen, T.T., Hill, M.J., Radhakrishnan, K., Memioglu, T.: A 100MHz Eight-Phase Buck Converter Delivering 12 A in 25 mm\(^{2}\) Using Air-Core Inductors. In: Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE, pp. 727–730 (2007). doi:10.​1109/​APEX.​2007.​357595
    27.Song, M.K., Dehghanpour, M.F., Sankman, J., Ma, D.: A VHF-Level Fully Integrated Multi-Phase Switching Converter Using Bond-Wire Inductors and On-Chip Decoupling Capacitors and DLL Phase Synchronization. In: 2014 Twenty-Ninth Annual IEEEApplied Power Electronics Conference and Exposition (APEC) (2014)
    28.Song, M.K., Sankman, J., Ma, D.: A 6A 40MHz Four-Phase ZDS Hysteretic DC-DC Converter with 118mV Droop and 230ns Response Time for a 5A/5ns Load Transient. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, pp. 80–81 (2014). doi:10.​1109/​ISSCC.​2014.​6757346
    29.Souvignet, T., Allard, B., Trochut, S., Hasbani, F.: A Simple Approach to a Linear Control of Switched Capacitor DC-DC Converters in System-on-Chip. In: Control and Modeling for Power Electronics (COMPEL), 2014 IEEE 15th Workshop on, pp. 1–7 (2014). doi:10.​1109/​COMPEL.​2014.​6877205
    30.Sturcken, N., O’Sullivan, E., Wang, N., Herget, P., Webb, B., Romankiw, L., et al. (2013). A 2.5D integrated voltage regulator using coupled-magnetic-core inductors on silicon interposer. IEEE J. Solid-State Circuits, 48(1), 244–254. doi:10.​1109/​JSSC.​2012.​2221237 .CrossRef
    31.Sturcken, N., Petracca, M., Warren, S., Carloni, L., Peterchev, A., Shepard, K.: An Integrated Four-Phase Buck Converter Delivering 1A/mm2 with 700ps Controller Delay and Network-on-Chip Load in 45-nm SOI. In: Custom Integrated Circuits Conference (CICC), 2011 IEEE, pp. 1–4 (2011). doi:10.​1109/​CICC.​2011.​6055336
    32.Sun, J., Lu, J.Q., Giuliano, D., Chow, T., Gutmann, R.: 3D Power Delivery for Microprocessors and High-Performance ASICs. In: Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE, pp. 127–133 (2007). doi:10.​1109/​APEX.​2007.​357505
    33.Villar, G., Alarcon, E.: Monolithic Integration of a 3-Level DCM-Operated Low-Floating-Capacitor Buck Converter for DC-DC Step-Down Conversion in Standard CMOS. In: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pp. 4229–4235 (2008)
    34.Wens, M., Steyaert, M.: A Fully-Integrated 0.18 \({{\mu }}\) m CMOS DC-DC Step-Down Converter, Using a Bondwire Spiral Inductor. In: Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE, pp. 17–20 (2008). doi:10.​1109/​CICC.​2008.​4672009
    35.Wens, M., & Steyaert, M. (2011). A fully integrated CMOS 800-mW four-phase semiconstant ON/OFF-time step-down converter. IEEE Trans. Power Electron., 26(2), 326–333. doi:10.​1109/​TPEL.​2010.​2057445 .CrossRef
    36.Wens, M., Steyaert, M.: Basic DC-DC Converter Theory. In: Design and Implementation of Fully-Integrated Inductive DC-DC Converters in Standard CMOS, Analog Circuits and Signal Processing, pp. 27–63. Springer, Netherlands (2011). doi:10.​1007/​978-94-007-1436-6_​2
    37.Wibben, J., & Harjani, R. (2008). A high-efficiency DC–DC converter using 2 nH integrated inductors. IEEE J. Solid-State Circuits, 43(4), 844–854. doi:10.​1109/​JSSC.​2008.​917321 .CrossRef
  • 作者单位:Florian Neveu (1)
    Bruno Allard (1)
    Christian Martin (1)

    1. Ampère Laboratory, University of Lyon, 21 Avenue Jean Capelle, 69621, Villeurbanne, France
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
This paper reviews the state-of-the-art of high switching frequency, integrated DC–DC converters and presents the main trade-offs and challenges emerging from this review. Various converter structures (1-phase buck, 2-phase buck, 2-phase coupled buck and 3-level converter) are then discussed and analyzed through simulation from a losses point-of-view. Considering the review, the architecture analysis and the technology model, 4 converters are designed for a given set of specifications: 3.3–1.2 V, 280 mA output current at high switching frequency (100–200 MHz) in 40 nm bulk CMOS. A cascode power stage is used in order to enhance power conversion efficiency, and 1-phase and 2-phase structures are designed. Post-layout simulation results are presented, showing an efficiency above 90 % for a 2-phase converter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700