Crotacetin, a novel snake venom C-type lectin homolog of convulxin, exhibits an unpredictable antimicrobial activity
详细信息    查看全文
  • 作者:Gandhi Rádis-Baptista (1)
    Frederico Bruno Mendes Batista Moreno (1) (3)
    Lucas de Lima Nogueira (1)
    Alice M. C. Martins (4)
    Daniela de Oliveira Toyama (5)
    Marcos Hikari Toyama (6)
    Benildo Sousa Cavada (1)
    Walter Filgueira de Azevedo Jr. (3)
    Tetsuo Yamane (7) (8)
  • 关键词:Crotalus durissus venom ; snake venom C ; type lectin ; crotacetin ; convulxin ; platelet aggregation ; antimicrobial activity
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2006
  • 出版时间:March 2006
  • 年:2006
  • 卷:44
  • 期:3
  • 页码:412-423
  • 全文大小:858KB
  • 参考文献:1. Mukherjee, A. K. and Maity, C. R. (2002) Biochemical composition, lethality and pathophysiology of venom from two cobras-em class="a-plus-plus">Naja naja and / N. kaouthia. / Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 131, 125-32. CrossRef
    2. Daltry, J. C., Wüster, W., and Thorpe, R. S. (1996) Diet and snake venom evolution. / Nature 379, 537-40. CrossRef
    3. Saravia, P., Rojas, E., Arce, V., et al. (2002) Geographic and ontogenic variability in the venom of the Neotropical rattlesnake / Crotalus durissus: pathophysiological and therapeutic implications. / Rev. Biol. Trop. 50, 337-46.
    4. Shashidharamurthy, R., Jagadeesha, D. K., Girish, K. S., and Kemparaju, K. (2002) Variations in biochemical and pharmacological properties of Indian cobra ( / Naja naja naja) venom due to geographical distribution. / Mol. Cell. Biochem. 229, 93-01. CrossRef
    5. Lopez-Lozano, J. L., De Sousa, M. V., Ricart, C. A., et al. (2002) Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild / Bothrops atrox specimens from Amazonian rain forest. / Toxicon 40, 997-006. CrossRef
    6. Tsai, I. H., Wang, Y. M., Chen, Y. H., and Tu, A. T. (2003) Geographic variations, cloning, and functional analyses of the venom acidic phospholipases A2 of / Crotalus viridis viridis. / Arch. Biochem. Biophys. 411, 289-96. CrossRef
    7. Harvey, A. (1993) / Natural and Synthetic Neurotoxins, Academic, New York.
    8. Markland, F. S. (1998) Snake venom and the hemostatic system. / Toxicon 36, 1749-800. CrossRef
    9. Drickamer, K. (1999) C-type lectin-like domains. / Curr. Opin. Struct. Biol. 9, 585-90. CrossRef
    10. Ogawa, T., Chijiwa, T., Oda-Ueda, N., and Ohno, M. (2005) Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. / Toxicon 45, 1-4. CrossRef
    11. Prado-Franceschi, J. and Brazil, O. V. (1981) Convulxin, a new toxin from the venom of the South American rattlesnake / Crotalus durissus terrificus. / Toxicon 19, 875-87. CrossRef
    12. Murakami, M. T., Zela, S. P., Gava, L. M., Michelan-Duarte, S., Cintra, A. C., and Arni, R. K. (2003) Crystal structure of the platelet activator convulxin, a disulfide-linked alpha4beta4 cyclic tetramer from the venom of / Crotalus durissus terrificus. / Biochem. Biophys. Res. Commun. 310, 478-82. CrossRef
    13. Batuwangala, T., Leduc, M., Gibbins, J. M., Bon, C., and Jones, E. Y. (2004) Structure of the snake-venom toxin convulxin. / Acta Crystallogr. 60, 46. CrossRef
    14. Polgar, J., Clemetson, J. M., Kehrel, B. E., et al. (1997) Platelet activation and signal transduction by convulxin, a C-type lectin from / Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. / J. Biol. Chem. 272, 13,576-3,583. CrossRef
    15. Hamako, J., Matsui, T., Suzuki, M., et al. (1996) Purification and characterization of bitiscetin, a novel von Willebrand factor modulator protein from / Bitis arietans snake venom. / Biochem. Biophys. Res. Commun. 226, 273-79. CrossRef
    16. Fujimura, Y., Titani, K., Usami, Y., et al. (1991) Isolation and chemical characterization of two structurally and functionally distinct forms of botrocetin, the platelet coagglutinin isolated from the venom of / Bothrops jararaca. / Biochemistry 30, 1957-964. CrossRef
    17. Fukuda, K., Mizuno, H., Atoda, H., and Morita, T. (2000) Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers. / Biochemistry 39, 1915. CrossRef
    18. Du, X. Y., Clemetson, J. M., Navdaev, A., Magnenat, E. M., Wells, T. N., and Clemetson, K. J. (2002) Ophioluxin, a convulxin-like C-type lectin from / Ophiophagus hannah (King cobra) is a powerful platelet activator via glycoprotein VI. / J. Biol. Chem. 277, 35,124-5,132.
    19. Huang, K. F., Ko, T. P., Hung, C. C., Chu, J., Wang, A. H., and Chiou, S. H. (2004) Crystal structure of a platelet-agglutinating factor isolated from the venom of Taiwan habu ( / Trimeresurus mucrosquamatus). / Biochem. J. 378, 399-07. CrossRef
    20. Furihata, K., Kato, K., Rádis-Baptista, G., and Kunicki, T. J. (2003) Recombinant convulxin induces platelet aggregation. / Blood 102, 2891.
    21. Rottenberg, D., Bamberger, E. S., and Kochva, E. (1971) Studies on ribonucleic acid synthesis in the venom glands of / Vipera palaestinae (Ophidiae, Reptilia). / Biochem. J. 121, 609-12.
    22. Rádis-Baptista, G., Oguiura, N., Hayashi, M. A. F., et al. (1999) Nucleotide sequence of crotamine isoform precursors from a single South American rattlesnake ( / Crotalus durissus terrificus). / Toxicon 37, 973-84. CrossRef
    23. Altschul, S. F., Madden, T. L., Sch?ffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Res. 25, 3389-402. CrossRef
    24. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. / Nucleic Acids Res. 22, 4673-680. CrossRef
    25. Uchoa, H. B., Jorge, G. E., da Silvei, N. J. F., Camera, J. C., Jr., Canduri, F., and de Azevedo, W. F. J. (2004) Parmodel: a web server for automated comparative modeling of proteins. / Biochem. Biophys. Res. Commun. 325, 1481-486. CrossRef
    26. Sali, A. and Blundell, T. L. (1993) Comparative protein modeling by satisfaction of spatial restraints. / J. Mol. Biol. 234, 779-15. CrossRef
    27. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. / J. Appl. Crystallogr. 26, 283-91. CrossRef
    28. Hooft, R. W., Vriend, G., Sander, C., and Abola, E. E. (1996) Errors in protein structures. / Nature 381, 83-5. CrossRef
    29. Bowie, J. U., Luthy, R., and Eisenberg, D. (1991) A method to identify protein sequences that fold into a known three-dimensional structure. / Science 253, 164-70. CrossRef
    30. Ramakrishnan, C. and Ramachandran, G. N. (1965) Stereochemical criteria for polypeptide and protein chain conformations. II. Allowed conformations for a pair of peptide units. / Biophys. J. 5, 909-33. CrossRef
    31. Chudzinski-Tavassi, A. M., Bermej, E., Rosenstein, R. E. et al. (2003) Nitridergic platelet pathway activation by hementerin, a metalloprotease from the leech / Haementeria depressa. / Biol. Chem. 384, 1333-339. CrossRef
    32. Fry, B. G. and Wauuster, W. (2004) Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. / Mol. Biol. Evol. 21, 871-85. CrossRef
    33. Nakashima, K., Nobuhisa, I., Deshimaru, M., et al. (1995) Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. / Proc. Natl. Acad. Sci. U.S.A. 92, 5605-609. CrossRef
    34. Ohno, M., Magenez, R., Ogawa, T., et al. (1998) Molecular evolution of snake toxins: Is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? / Prog. Nucleic Acids Res. Mol. Biol. 59, 309-64.
    35. Afifiyan, F., Armugam, A., Tan, C. H., Gopalakrishnakone, P., and Jeyaseelan, K. (1999) Postsynaptic alpha-neurotoxin gene of the spitting cobra, / Naja naja sputatrix: structure, organization, and phylogenetic analysis. / Genome Res. 9, 259-66.
    36. Tani, A., Ogawa, T., Nose, T., et al. (2002) Characterization, primary structure and molecular evolution of anticoagulant protein from / Agkistrodon actus venom. / Toxicon 40, 803-13. CrossRef
    37. Olivera, B. M., Walker, C., Cartier, G. E., et al. (1999) Specification of cone snails and interspecific hyperdivergency of their venom peptides, potential evolutionary significance of introns. / Ann. N.Y. Acad. Sci. 870, 223-37. CrossRef
    38. Chang, L., Lin, S., Huang, H., and Hsiao, M. (1999) Genetic organization of alpha-bungarotoxins from / Bungarus multicinctus (Taiwan banded krait): evidence showing that the production of alpha-bungarotoxin isotoxins is not derived from edited mRNAs. / Nucleic Acids Res. 27, 3970-975. CrossRef
    39. Rádis-Baptista, G., Kubo, T., Oguiura, N., et al. (2004) Identification of crotasin, a crotamine-related gene of / Crotalus durissus terrificus. / Toxicon 43, 751-59. CrossRef
    40. Morrison, G. M., Semple, C. A., Kilanowski, F. M., Hill, R. E., and Dorin, J. R. (2003) Signal sequence conservation and mature peptide divergence within subgroups of the murine beta-defensin gene family. / Mol. Biol. Evol. 20, 460-70. CrossRef
    41. Sumiyama, K., Saitou, N., and Ueda, S. (2002) Adaptive evolution of the IgA hinge region in primates. / Mol. Biol. Evol. 19, 1093-009.
    42. Ohno, M., Chijiwa, T., Oda-Ueda, N., Ogawa, T., and Hattori, S. (2003) Molecular evolution of myotoxic phospholipases A2 from snake venom. / Toxicon 42, 841-54. CrossRef
    43. Kanaji, S., Kanaji, T., Furihata, K., Kato, K., Ware, J. L., and Kunicki, T. J. (2003) Convulxin binds to native, human glycoprotein Ib alpha. / J. Biol. Chem. 278, 39,452-9,460. CrossRef
    44. Kassab, B. H., De Carvalho, D. D., Oliveira, M. A., et al. (2004) Cloning, expression, and structural analysis of recombinant BJcuL, a c-type lectin from the / Bothrops jararacussu snake venom. / Protein Expr. Purif. 35, 344-52. CrossRef
    45. Jack, D. L. and Turner, M. W. (2003) Anti-microbial activities of mannose-binding lectin. / Biochem. Soc. Trans. 31, 753-57. CrossRef
    46. Geijtenbeek, T. B., Van Vliet, S. J., Engering, A. T., Hart, B. A., and van Kooyk, Y. (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. / Annu. Rev. Immunol. 22, 33-4. CrossRef
  • 作者单位:Gandhi Rádis-Baptista (1)
    Frederico Bruno Mendes Batista Moreno (1) (3)
    Lucas de Lima Nogueira (1)
    Alice M. C. Martins (4)
    Daniela de Oliveira Toyama (5)
    Marcos Hikari Toyama (6)
    Benildo Sousa Cavada (1)
    Walter Filgueira de Azevedo Jr. (3)
    Tetsuo Yamane (7) (8)

    1. Department of Biochemistry and Molecular Biology, Federal University of Ceará, Ceara, Brazil
    3. Department of Physics-IBILCE/UNESP, S?o Paulo, Brazil
    4. Department of Clinical and Toxicological Analysis, Federal University of Ceará, Ceara, Brazil
    5. Department of Biochemistry, UNICAMP, S?o Paulo, Brazil
    6. Department of Fundamental Chemistry, UNESP, S?o Paulo, Brazil
    7. Laboratory of Molecular Biology, IPEN-CNEN, S?o Paulo, Brazil
    8. Center of Biothecnology of Amazon, CBA, Manaus, Brazil
文摘
Snake venom (sv) C-type lectins encompass a group of hemorrhagic toxins that are capable of interfering with blood stasis. A very well-studied svC-type lectin is the heterodimeric toxin, convulxin (CVX), from the venom of South American rattlesnake Crotalus durissus terrificus. CVX is able to activate platelets and induce their aggregation by acting via p62/GPVI collagen receptor. By using polymerase chain reaction homology screening, we have cloned several cDNA precursors of CVX subunit homologs. One of them, named crotacetin (CTC) β-subunit, predicts a polypeptide with a topology very similar to the tridimensional conformations of other subunits of CVX-like snake toxins, as determined by computational analysis. Using gel permeation and reverse-phase high-performance liquid chromatography, CTC was purified from C. durissus venoms. CTC can be isolated from the venom of several C. durissus subspecies, but its quantitative predominance is in the venom of C. durissus cascavella. Functional analysis indicates that CTC induces platelet aggregation, and, importantly, exhibits an antimicrobial activity against Gram-positive and-negative bacteria, comparable with CVX.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700