Some Recent Results on Distributed Control of Nonlinear Systems
详细信息    查看全文
  • 刊名:Lecture Notes in Control and Information Sciences
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:470
  • 期:1
  • 页码:21-50
  • 全文大小:819 KB
  • 参考文献:1.Aguiar, A.P., Pascoal, A.M.: Coordinated path-following control for nonlinear systems with logic-based communication. In Proceedings of the 46th Conference on Decision and Control, pp. 1473–1479 (2007)
    2.Arcak, M.: Passivity as a design tool for group coordination. IEEE Trans. Autom. Control 52, 1380–1390 (2007)MathSciNet CrossRef
    3.Cao, M., Morse, A.S., Anderson, B.D.O.: Reaching a consensus in a dynamically changing environment: convergence rates, measurement delays, and asynchronous events. SIAM J. Control Optim. 47, 601–623 (2008)MathSciNet CrossRef MATH
    4.Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57, 33–48 (2012)MathSciNet CrossRef
    5.Cortés, J., Martínez, S., Bullo, F.: Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans. Autom. Control 51, 1289–1298 (2006)MathSciNet CrossRef
    6.d’Andréa-Novel, B., Bastin, G., Campion, G.:Dynamic feedback linearization of nonholonomic wheeled mobile robots. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 2527–2532 (1992)
    7.Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Autom. 17, 905–908 (2001)CrossRef
    8.Dixon, W.E., Dawson, D.M., Zergeroglu, E., Behal, A.: Nonlinear Control of Wheeled Mobile Robots. Springer, London (2001)MATH
    9.Do, K.D.: Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Trans. Control Syst. Technol. 16, 527–538 (2008)MathSciNet CrossRef
    10.Dong, W., Farrell, J.A.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty. Automatica 45, 706–710 (2009)MathSciNet CrossRef MATH
    11.Everett, H.R.: Sensors for Mobile Robots: Theory and Application. A. K, Peters, Natick (1995)
    12.Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formation. IEEE Trans. Autom. Control 49, 1465–1476 (2004)MathSciNet CrossRef
    13.Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)
    14.Fliess, M., Lévine, J.L., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control 61, 1327–1361 (1995)MathSciNet CrossRef MATH
    15.Fridman, E., Bar Am, N.: Sampled-data distributed \(h_{\infty }\) control of a class of parabolic systems. In Proceedings of the 51st IEEE Conference on Decision and Control, pp. 7529–7534 (2012)
    16.Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48, 692–697 (2003)MathSciNet CrossRef
    17.Ghabcheloo, R., Aguiar, A.P., Pascoal, A., Silvestre, C., Kaminer, I., Hespanha, J.: Coordinated path-following in the presence of communication losses and time delays. SIAM J. Control Optim. 48, 234–265 (2009)MathSciNet CrossRef MATH
    18.Hirschhorn, J.: Kinematics and Dynamics of Plane Mechanisms. McGraw-Hill Book Company, New York (1962)
    19.Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection. IEEE Trans. Autom. Control 52, 943–948 (2007)MathSciNet CrossRef
    20.Ihle, I.-A.F., Arcak, M., Fossen, T.I.: Passivity-based designs for synchronized path-following. Automatica 43, 1508–1518 (2007)MathSciNet CrossRef MATH
    21.Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)MathSciNet CrossRef
    22.Jiang, Z.P.: Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans. Autom. Control 45, 2122–2128 (2000)MathSciNet CrossRef MATH
    23.Jiang, Z.P., Mareels, I.M.Y.: A small-gain control method for nonlinear cascade systems with dynamic uncertainties. IEEE Trans. Autom. Control 42, 292–308 (1997)MathSciNet CrossRef MATH
    24.Jiang, Z.P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33, 1393–1399 (1997)MathSciNet CrossRef MATH
    25.Jiang, Z.P., Teel, A.R., Praly, L.: Small-gain theorem for ISS systems and applications. Math. Control Signals Syst. 7, 95–120 (1994)MathSciNet CrossRef MATH
    26.Jiang, Z.P., Wang, Y.: A converse Lyapunov theorem for discrete-time systems with disturbances. Syst. Control Lett. 45, 49–58 (2002)MathSciNet CrossRef MATH
    27.Jiang, Z.P., Wang, Y.: A generalization of the nonlinear small-gain theorem for large-scale complex systems. In Proceedings of the 7th World Congress on Intelligent Control and Automation, pp. 1188–1193 (2008)
    28.Karafyllis, I., Jiang, Z.P.: Stability and Stabilization of Nonlinear Systems. Springer, London (2011)CrossRef MATH
    29.Khalil, H.K.: Nonlinear Systems (3rd Edition). Prentice-Hall, New Jersey (2002)
    30.Lan, Y., Yan, G., Lin, Z.: Synthesis of distributed control of coordinated path following. IEEE Trans. Autom. Control 56, 1170–1175 (2011)MathSciNet CrossRef
    31.Li, Q., Jiang, Z.P.: Flocking control of multi-agent systems with application to nonholonomic multi-robots. Kybernetika 45, 84–100 (2009)MathSciNet MATH
    32.Li, Z., Liu, X., Ren, W., Xie, L.: Consensus control of linear multi-agent systems with distributed adaptive protocols. In Proceedings of the 2012 American Control Conference, pp. 1573–1578 (2012)
    33.Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50, 121–127 (2005)MathSciNet CrossRef
    34.Lin, Z., Francis, B., Maggiore, M.: State agreement for continuous-time coupled nonlinear systems. SIAM J. Control Optim. 46, 288–307 (2007)MathSciNet CrossRef MATH
    35.Liu, T., Hill, D.J., Jiang, Z.P.: Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks. Automatica 47, 2088–2093 (2011)MathSciNet CrossRef MATH
    36.Liu, T., Jiang, Z.P.: Distributed nonlinear control of mobile autonomous multi-agents. Automatica 50, 1075–1086 (2014)MathSciNet CrossRef MATH
    37.Liu, T., Jiang, Z.P.: Distributed control of nonlinear uncertain systems: a cyclic-small-gain approach. Acta Automatica Sinica, 2016. In press
    38.Liu, T., Jiang, Z.P.: Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica 49, 592–600 (2013)MathSciNet CrossRef MATH
    39.Liu, T., Jiang, Z.P.: Distributed output-feedback control of nonlinear multi-agent systems. IEEE Trans. Autom. Control 58, 2912–2917 (2013)MathSciNet CrossRef
    40.Liu, T., Jiang, Z.P., Hil, D.J.: Nonlinear Control of Dynamic Networks. CRC Press, Boca Raton (2014)
    41.Martensson, K., Rantzer, A.: A scalable method for continuous-time distributed control synthesis. In Proceedings of the 2012 American Control Conference, pp. 6308–6313 (2012)
    42.Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50, 169–182 (2005)MathSciNet CrossRef
    43.Nersesov, S.G., Ghorbanian, P., Aghdam, A.G.: Stabilization of sets with application to multi-vehicle coordinated motion. Automatica 46, 1419–1427 (2010)MathSciNet CrossRef MATH
    44.Ögren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multiagent coordination. IEEE Trans. Robot. Autom. 18, 847–851 (2002)CrossRef
    45.Ögren, P., Fiorelli, E., Leonard, N.: Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed network. IEEE Trans. Autom. Control 49, 1292–1302 (2004)CrossRef
    46.Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006)MathSciNet CrossRef
    47.Qin, J., Zheng, W.X., Gao, H.: Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica 47, 1983–1991 (2011)MathSciNet CrossRef MATH
    48.Qu, Z., Wang, J., Hull, R.A.: Cooperative control of dynamical systems with application to autonomous vehicles. IEEE Trans. Autom. Control 53, 894–911 (2008)MathSciNet CrossRef
    49.Sadowska, A., Kostic, D., van de Wouw, N., Huijberts, H., Nijmeijer, H.: Distributed formation control of unicycle robots. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, pp. 1564–1569 (2012)
    50.Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45, 2557–2562 (2009)MathSciNet CrossRef MATH
    51.Shi, G., Hong, Y.: Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies. Automatica 45, 1165–1175 (2009)MathSciNet CrossRef MATH
    52.Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34, 93–100 (1998)MathSciNet CrossRef MATH
    53.Stan, G.-B., Sepulchre, R.: Dissipativity and global analysis of oscillators. IEEE Trans. Autom. Control 52, 256–270 (2007)MathSciNet CrossRef
    54.Su, Y., Huang, J.: Output regulation of a class of switched linear multi-agent systems: a distributed observer approach. In Proceedings of the 18th IFAC World Congress, pp. 4495–4500 (2011)
    55.Tanner, H., Jadbabaie, A., Pappas, G.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52, 863–868 (2007)MathSciNet CrossRef
    56.Tanner, H.G., Pappas, G.J., Kummar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20, 443–455 (2004)CrossRef
    57.Wang, X., Hong, Y., Huang, J., Jiang, Z.P.: A distributed control approach to a robust output regulation problem for multi-agent systems. IEEE Trans. Autom. Control 55, 2891–2895 (2010)MathSciNet CrossRef
    58.Wieland, P., Sepulchre, R., Allgöwer, F.: An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47, 1068–1074 (2011)MathSciNet CrossRef MATH
    59.Yu, H., Antsaklis, J.: Distributed formation control of networked passive systems with event-driven communication. In Proceedings of the 51st IEEE Conference on Decision and Control, pp. 3292–3297 (2012)
  • 作者单位:Tengfei Liu (6)
    Zhong-Ping Jiang (7)

    6. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
    7. Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
  • 丛书名:Nonlinear Systems
  • ISBN:978-3-319-30357-4
  • 刊物类别:Engineering
  • 刊物主题:Control Engineering
    Vibration, Dynamical Systems and Control
  • 出版者:Springer Berlin / Heidelberg
  • 卷排序:470
文摘
The spatially distributed structure of complex systems motivates the idea of distributed control. In a distributed control system, the subsystems are controlled by local controllers through information exchange with neighboring agents for coordination purposes. One of the major difficulties of distributed control is due to the complex characteristics such as nonlinearity, dimensionality, uncertainty, and information constraints. This chapter introduces small-gain methods for distributed control of nonlinear systems. In particular, a cyclic-small-gain result in digraphs is presented as an extension of the standard nonlinear small-gain theorem. It is shown that the new result is extremely useful for distributed control of nonlinear systems. Specifically, this chapter first gives a cyclic-small-gain design for distributed output-feedback control of nonlinear systems. Then, an application to formation control problem of nonholonomic mobile robots with a fixed information exchange topology is presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700