Identifying water sources in a karst aquifer using thermal signatures
详细信息    查看全文
  • 作者:Ryan Doucette (1) (2)
    Eric W. Peterson (1)
  • 关键词:Water temperature ; Epikarst ; Mixing model ; Northwest Arkansas
  • 刊名:Environmental Earth Sciences
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:72
  • 期:12
  • 页码:5171-5182
  • 全文大小:5,453 KB
  • 参考文献:1. Adamski JC, Petersen JC, Freiwald DA, Davis JV (1995) Environmental and hydrologic setting of the Ozark Plateaus study unit, Arkansas, Kansas, Missouri, and Oklahoma. In: Survey USG (ed). US geological survey, Little Rock. p 79
    2. Al-Rashidy SM (1999) Hydrogeologic controls of groundwater in the shallow mantled karst aquifer, Copperhead spring, Savoy experimental watershed. University of Arkansas, Northwest Arkansas
    3. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951鈥?68. doi:10.1111/j.1745-6584.2005.00052.x CrossRef
    4. Atkinson TC (1977) Carbon dioxide in the atmosphere of the unsaturated zone: an important control of groundwater hardness in limestones. J Hydrol 35:111鈥?23 CrossRef
    5. Beach V, Peterson EW (2013) Variation of hyporheic temperature profiles in a low gradient third-order agricultural stream: a statistical approach. Open J Mod Hydrol 3:55鈥?6. doi:10.4236/ojmh.2013.32008 CrossRef
    6. Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci J 38:51鈥?2. doi:10.1080/02626669309492639 CrossRef
    7. Brahana JV, Hays PD, Kresse TM, Sauer TJ, Stanton GP (1999) The savoy experimental watershed-early lessons for hydrogeologic modeling from a Well-characterized karst research site. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling. Karst Waters Institute, Charlottesville, pp 247鈥?54
    8. Brahana JV, Ting TE, Al-Qinna M, Murdoch JF, Davis RK, Laincz J, Killingbeck JJ, Szilvagyi E, Doheny-Skubic M, Chaubey I, Hays PD, Thoma G (2005) Quantification of hydrologic budget parameters for the vadose zone and epikarst in mantled karst. In: Kuniansky EL (ed) US geological survey karst interest group proceedings. United States Geological Survey, Rapid City, pp 144鈥?52
    9. Cardenas MB (2009) Stream鈥揳quifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res 45. doi:10.1029/2008WR007651
    10. Cardenas MB, Wilson JL (2007) Thermal regime of sediments in channels under gaining and losing conditions. J Geophys Res 112. doi:10.1029/2007JG000485
    11. Cardenas MB, Harvey JW, Packman AI, Scott DT (2008) Ground-based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness. Hydrol Process 22:980鈥?86. doi:10.1002/hyp.6932 CrossRef
    12. Constantz J, Stonestrom DA (2003) Chapter 1 Heat as a tracer of water movement near streams. In: Stonestrom DA, Constantz J (eds) Heat as a tool for studying the movement of ground water near streams. Geological Survey, Denver, pp 1鈥?
    13. Constantz J, Cox MH, Su GW (2003a) Comparison of heat and bromide as ground water tracers near streams. Ground Water 41:647鈥?56 CrossRef
    14. Constantz J, Jasperse J, Seymour D, Su GW (2003b) Chapter 3 heat tracing in the streambed along the Russian River of northern California. In: Stonestrom DA, Constantz J (eds) Heat as a tool for studying the movement of ground water near streams. Geological Survey, Denver, pp 17鈥?0
    15. Covington MD, Wicks CM, Saar MO (2009) A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers. Water Resour Res 45. doi:10.1029/2009WR008004
    16. Covington MD, Doctor DH, King JN, Wicks CM (2011) Research in karst: a model for future directions in hydrologic science? AGU Hydrol Sect Newslett 47:18鈥?2
    17. Davis RK, Hamilton S, Brahana JV (2005) / Escherichia coli survival in mantled karst springs and streams, northwest Arkansas Ozarks, USA. J Am Water Res Assoc 41:1279鈥?287 CrossRef
    18. Dogwiler TJ, Wicks CM (2005) Thermal variations in the hyporheic zone of a karst stream. Speleogen Evolut Karst Aquif 3:11
    19. Dogwiler T, Wicks CM, Jenzen E (2007) An assessment of the applicability of the heat pulse method toward the determination of infiltration rates in karst losing-stream reaches. Jour Cave Karst Stud 69:237鈥?42
    20. Dreiss SJ (1983) Linear unit-response functions as indicators of recharge areas for large karst springs. In: VT Stringfield symposium; Processes in karst hydrology. Elsevier, Amsterdam. pp 31鈥?4
    21. Dreiss SJ (1989) Regional scale transport in a karst aquifer; 2, Linear systems and time moment analysis. Water Resour Res 25:126鈥?34 CrossRef
    22. Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier Y (1997) Numerical simulation as a tool for checking the interpretation of karst spring hydrographs. J Hydrol 193:306鈥?15 CrossRef
    23. Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water鈥揼roundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42. doi:10.1029/2005WR004787
    24. Hobza CM, Moffit DC, Goodwin DP, Kresse T, Fazio J, Brahana JV, Hays PD (2005) Ground-Water quality near a swine waste lagoon in a mantled karst terrane in northwestern Arkansas. In: Kuniansky EL (ed) US geological survey karst interest group proceedings. US Geological Survey, Rapid City, pp 155鈥?62
    25. Iqbal MZ, Krothe NC (1995) Infiltration mechanisms related to agricultural waste transport through the soil mantle to karst aquifers of southern Indiana, USA. J Hydrol 164:171鈥?92 CrossRef
    26. Keery J, Binleya A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater鈥搒urface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336:1鈥?6. doi:10.1016/j.jhydrol.2006.1012.1003 CrossRef
    27. Lakey BL, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32:721鈥?31 CrossRef
    28. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA; using solute concentration and stable isotopes as tracers. Chem Geol 179:129鈥?43 CrossRef
    29. Lee ES, Krothe NC (2003) Delineating the karstic flow system in the upper Lost River drainage basin, south central Indiana; using sulphate and delta (super 34) S (sub SO4) as tracers. Appl Geochem 18:145鈥?53 CrossRef
    30. Leh MD, Chaubey I, Murdoch J, Brahana JV, Haggard BE (2008) Delineating runoff processes and critical runoff source areas in a pasture hillslope of the Ozark Highlands. Hydrol Process. doi:10.1002/hyp.7021
    31. Luhmann AJ, Covington MD, Peters AJ, Alexander SC, Anger CT, Green JA, Runkel AC, Alexander EC Jr (2010) Classification of thermal patterns at karst springs and cave streams. Ground Water. doi:10.1111/j.1745-6584.2010.00737.x
    32. National Weather Service (2011) WFO monthly/daily climate data drake field Fayetteville, AR. In: National Weather Service (ed), National Weather Service, USA
    33. O鈥橠riscoll MA, DeWalle DR (2006) Stream鈥揳ir temperature relations to classify stream鈥揼round water interactions in a karst setting, central Pennsylvania, USA. J Hydrol 329. doi:10.1016/j.jhydrol.2006.02.010
    34. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73鈥?9. doi:10.1016/0022-1694(94)02648-U CrossRef
    35. Pennington D (2010) Karst drainage-basin analysis using hydrograph decomposition techniques at the Savoy Experimental Watershed, Savoy. University of Arkansas, Arkansas
    36. Perrin J, Jeannin PY, Cornaton F (2007) The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland. J Hydrol 332:158鈥?73. doi:10.1016/j.hydrol.2006.06.027 CrossRef
    37. Peterson EW, Sickbert TB (2006) Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeol J 14:1443鈥?451. doi:10.1007/s10040-006-0050-3 CrossRef
    38. Peterson EW, Wicks CM (2005) Fluid and solute transport from a conduit to the matrix in a carbonate aquifer system. Math Geol 37:851鈥?68 CrossRef
    39. Peterson EW, Wicks CM (2006) Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM). J Hydrol 329:294鈥?05. doi:10.1016/j.jhydrol.2006.02.017 CrossRef
    40. Sauer TJ, Logsdon SD, Brahana JV, Murdoch JF (2005) Variation in infiltration with landscape position: implications for forest productivity and surface water quality. For Ecol Manage 220:118鈥?27. doi:10.1016/j.foreco.2005.08.009 CrossRef
    41. Sauer TJ, Alexandery RB, Brahana JV, Smith RA (2008) The Importance and role of watersheds in the transport of nitrogen. In: Hatfield JL, Follett RF (eds) Nitrogen in the environment: sources, problems, and management. USDA Agricultural Research Service, Lincoln, pp 203鈥?40 CrossRef
    42. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards Aquifer, USA. J Hydrol 276:137鈥?58 CrossRef
    43. Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of a simple analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol. doi:10.1016/j.jhydrol.2007.1008.1022
    44. Sincich T (1990) Statistics by example, 4th edn. Dellen Publishing Company, San Francisco
    45. Ting TE (2005) Assessing bacterial transport, storage and viability in mantled karst of Northwest Arkansas using clay and / Escherichia coli labeled with lanthanide-series metals. University of Arkansas, Arkansas
    46. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85鈥?05 CrossRef
    47. Whitsett KS (2002) Sediment and bacterial tracing in mantled karst at Savoy Experimental Watershed, northwest Arkansas. University of Arkasnas, Arkasnas
    48. Wicks CM, Hoke JA (1999) Linear systems approach to modeling groundwater flow and solute transport through karstic basins. Karst modeling. Karst Waters Institute, pp 97鈥?01
    49. Worthington SRH, Davies GJ, Quinlan JF (1992) Geochemistry of springs in temperate carbonate aquifers; recharge type explains most of the variation. Cinquieme colloque d鈥檋ydrologie en pays calcaire et en milieu fissure. Universite de Besancon, Besancon, pp 341鈥?47
    50. Wu Y, Jiang Y, Yuan D, Li L (2008) Modeling hydrological responses of karst spring to storm events. Environ Geol 55:1545鈥?553. doi:10.1007/s00254-007-1105-z CrossRef
    51. Zou KH, Tuncali K, Silverman SG (2003) Correlation and simple linear regression. Radiology 227:617鈥?28. doi:10.1148/radiol.2273011499 CrossRef
  • 作者单位:Ryan Doucette (1) (2)
    Eric W. Peterson (1)

    1. Department of Geography-Geology, Illinois State University, Campus Box 4400, Normal, IL, 61790, USA
    2. Anadarko Petroleum Corporation, The Woodlands, TX, 77380, USA
  • ISSN:1866-6299
文摘
Using thermal data, a unique approach to delineate flow components in a karsts aquifer was conducted. Thermal signatures from seven wells and six springs were analyzed to determine potential relationships among different storage reservoirs and the air temperature. The temperature signatures revealed three distinct reservoirs: epikarst, shallow groundwater, and deep groundwater. The reservoirs have different thermal signatures and relationships with the air temperature. During a wetter period, the epikarst water temperatures more closely follow the air temperature trend and are closer in value, but during drier conditions, the shallow groundwater temperatures are more similar in value to air temperature. Deep groundwater temperatures show no relationship to variations in surface air temperature. Using the water temperatures from the three reservoirs, the sources of water at two major springs, Copperhead and Langle, were delineated. During the wetter period, the shallow groundwater and the epikarst were the primary contributors of water to the springs. As conditions became drier a transition occurred, the deep groundwater became the major source of water to the springs. Variation in temperatures of waters at Copperhead and Langle spring is a result of the epikarst and the shallow groundwater, which represents ineffective thermal reservoirs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700