A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations
详细信息    查看全文
  • 作者:Florent Renac
  • 关键词:Mathematics Subject Classification65M12 ; 65M60
  • 刊名:Numerische Mathematik
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:135
  • 期:2
  • 页码:493-519
  • 全文大小:
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Numerical Analysis; Mathematics, general; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation; Appl.Mathematics/Comput
  • 出版者:Springer Berlin Heidelberg
  • ISSN:0945-3245
  • 卷排序:135
文摘
We present an extension to high-order of a first-order Lagrange-projection like method for the approximation of the Euler equations introduced in Coquel et al. (Math Comput 79:1493–1533, 2010). The method is based on a decomposition between acoustic and transport operators associated to an implicit–explicit time integration, thus relaxing the constraint of acoustic waves on the time step. We propose here to use a discontinuous Galerkin method for the space approximation. Considering the isentropic Euler equations, we derive conditions to keep positivity of the mean value of density and to satisfy a discrete entropy inequality in each element of the mesh at any approximation order in space. These results allow to design limiting procedures to restore these properties at nodal values within elements. Numerical experiments support the conclusions of the analysis and highlight stability and robustness of the present method, while it allows the use of large time steps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700