Local Heterozygosity Effects on Nestling Growth and Condition in the Great Cormorant
详细信息    查看全文
  • 作者:Piotr Minias ; Katarzyna Wojczulanis-Jakubas ; Robert Rutkowski…
  • 关键词:Great cormorant ; Growth rate ; Heterozygosity ; fitness correlations ; Microsatellites ; Phalacrocorax carbo sinensis
  • 刊名:Evolutionary Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:42
  • 期:4
  • 页码:452-460
  • 全文大小:475 KB
  • 参考文献:Acevedo-Whitehouse, K., Spraker, T. R., Lyons, E., Melin, S. R., Gulland, F., Delong, R. L., & Amos, W. (2006). Contrasting effects of heterozygosity on survival and hookworm resistance in California sea lion pups. Molecular Ecology, 15, 1973-982.CrossRef PubMed
    Alho, J. S., V?lim?ki, K., & Meril?, J. (2010). Rhh: An R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Molecular Ecology Resources, 10, 720-22.CrossRef PubMed
    Amos, W., Wilmer, J. W., Fullard, K., Burg, T. M., Croxall, J. P., Bloch, D., & Coulson, T. (2001). The influence of parental relatedness on reproductive success. Proceeding of the Royal Society B, 268, 2021-027.CrossRef
    Aparicio, J. M., Cordero, P. J., & Veiga, J. P. (2001). A test of the hypothesis of mate choice based on heterozygosity in the spotless starling. Animal Behaviour, 62, 1001-006.CrossRef
    Aparicio, J. M., Ortego, J., & Cordero, P. J. (2006). What should we weigh to estimate heterozygosity, alleles or loci? Molecular Ecology, 15, 4659-665.CrossRef PubMed
    Arct, A., Rutkowska, J., Martyka, R., Drobniak, S. M., & Cichoń, M. (2010). Kin recognition and adjustment of reproductive effort in zebra finches. Biology Letters, 6, 762-64.PubMedCentral CrossRef PubMed
    Balloux, F., Amos, W., & Coulson, T. (2004). Does heterozygosity estimate inbreeding in real populations? Molecular Ecology, 13, 3021-031.CrossRef PubMed
    Bierne, N., Tsitrone, A., & David, P. (2000). An inbreeding model of associative overdominance during a population bottleneck. Genetics, 155, 1981-990.PubMedCentral PubMed
    Brouwer, L., Komdeur, J., & Richardson, D. S. (2007). Heterozygosity–fitness correlations in a bottlenecked island species: A case study on the Seychelles warbler. Molecular Ecology, 16, 3134-144.CrossRef PubMed
    Cash, K. J., & Evans, R. M. (1986). Brood reduction in the American Pelican (Pelecanus erythrorhynchos). Behavioral Ecology and Sociobiology, 18, 413-18.CrossRef
    Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J., & Sheldon, B. C. (2009). A quantitative review of heterozygosity–fitness correlations in animal populations. Molecular Ecology, 18, 2746-765.CrossRef PubMed
    Charpentier, M. J., Prugnolle, F., Gimenez, O., & Widdig, A. (2008). Genetic heterozygosity and sociality in a primate species. Behavior Genetics, 38, 151-58.CrossRef PubMed
    Cothran, E. G., Chesser, R., Smith, M. H., & Johns, P. E. (1983). Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution, 37, 282-91.CrossRef
    Coulson, T. N., Pemberton, J. M., Albon, S. D., Beaumont, M. A., Marshall, T. C., Slate, J., et al. (1998). Microsatellites reveal heterosis in red deer. Proceedings of the Royal Society B, 265, 489-95.PubMedCentral CrossRef PubMed
    David, P. (1998). Heterozygosity–fitness correlations: New perspective on old problems. Heredity, 80, 531-37.CrossRef PubMed
    David, P., Pujol, B., Viard, F., Castella, V., & Goudet, J. (2007). Reliable selfing rate estimates from imperfect population genetic data. Molecular Ecology, 16, 2474-487.CrossRef PubMed
    Forstmeier, W., Schielzeth, H., Mueller, J. C., Ellegren, H., & Kempenaers, B. (2012). Heterozygosity-fitness correlations in zebra finches: Microsatellite markers can be better than their reputation. Molecular Ecology, 21, 3237-249.CrossRef PubMed
    Foss?y, F., Johnsen, A., & Lifjeld, J. T. (2009). Cell-mediated immunity and multi-locus heterozygosity in bluethroat nestlings. Journal of Evolutionary Biology, 22, 1954-960.CrossRef PubMed
    Fridolfsson, A. K., & Ellegren, H. (1999). A simple and universal method for molecular sexing of non ratite birds. Journal of Avian Biology, 30, 116-21.CrossRef
    García-Navas, V., Ortego, J., & Sanz, J. J. (2009). Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): Implications for the evolution of mate choice. Proceedings of the Royal Society B, 276, 2931-940.PubMedCentral CrossRef PubMed
    G?owaciński, Z. (Ed.). (1992). Polish red data book of animals, Vertebrates. Warszawa: PWRiL. (in Polish with English summary).
    Goostrey, A., Carss, D. N., Noble, L. R., & Piertney, S. B. (1998). Population introgression and differentiation in the great cormorant Phalacrocorax carbo in Europe. Molecular Ecology, 7, 329-38.CrossRef
    Griffiths, R., Double, M. C., Orr, K., & Dawson, R. J. (1998). A DNA test to sex most birds. Molecular Ecology, 7, 1071-075.CrossRef PubMed
    Hagemeijer, W. J. M., & Blair, M. J. (1997). The EBCC atlas of European breeding birds: Their distribution and abundance. London: Poyser.
    Hansson, B., Bensch, S., Hasselquist, D., & ?kesson, M. (2001). Microsatellite diversity predicts recruitment of sibling great reed warblers. Proceedings of the Royal Society B, 268, 1287-291.PubMedCentral CrossRef PubMed
    Hansson, B., & Westerberg, L. (2002). On the correlation between heterozygosity and fitness in natural populatio
  • 作者单位:Piotr Minias (1) (2)
    Katarzyna Wojczulanis-Jakubas (3)
    Robert Rutkowski (4)
    Krzysztof Kaczmarek (5)

    1. Department of Teacher Training and Biodiversity Studies, University of ?ód?, Banacha 1/3, 90-237, ?ód?, Poland
    2. Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201, USA
    3. Department of Vertebrate Ecology and Zoology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
    4. Department of Molecular and Biometrical Techniques, Museum and Institute of Zoology PAS, 00-679, Warsaw, Poland
    5. Medical University of ?ód?, Sterlinga 1/3, 91-425, ?ód?, Poland
  • 刊物主题:Evolutionary Biology; Ecology; Developmental Biology; Human Genetics; Animal Genetics and Genomics;
  • 出版者:Springer US
  • ISSN:1934-2845
文摘
Under inbreeding, heterozygosity at neutral genetic markers is likely to reflect genome-wide heterozygosity and, thus, is expected to correlate with fitness. There is, however, growing evidence that some of heterozygosity-fitness correlations (HFCs) can be explained by ‘local effects- where noncoding loci are at linkage disequilibrium with functional genes. The aim of this study was to investigate correlations between heterozygosity at seven microsatellite loci and two fitness-related traits, nestling growth rate and nutritional condition, in a recently bottlenecked population of great cormorant Phalacrocorax carbo sinensis. We found that heterozygosity was positively associated with both nestling traits at the between-brood level, but the individual (within-brood) effects of heterozygosity were non-significant. We also found that only one locus per trait was primarily responsible for the significant multi-locus HFCs, suggesting a linkage disequilibrium with non-identified functional loci. The results give support for ‘local effect-hypothesis, confirming that HFCs may not only be interpreted as evidence of inbreeding and that genetic associations between functional and selectively neutral markers could be much more common in natural populations than previously thought. Keywords Great cormorant Growth rate Heterozygosity-fitness correlations Microsatellites Phalacrocorax carbo sinensis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700