Automated longitudinal monitoring of in vivo protein aggregation in neurodegenerative disease C. elegans models
详细信息    查看全文
  • 作者:Matteo Cornaglia ; Gopalan Krishnamani ; Laurent Mouchiroud…
  • 关键词:Caenorhabditis elegans ; Neurodegenerative disease ; Amyotrophic lateral sclerosis (ALS) ; Huntington disease (HD) ; Doxycycline treatment ; Protein aggregation ; Longitudinal time ; resolved analysis ; High ; resolution imaging ; Worm immobilization ; Temperature control ; Microfluidics
  • 刊名:Molecular Neurodegeneration
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 全文大小:3,247 KB
  • 参考文献:1.Kunze A, Lengacher S, Dirren E, Aebischer P, Magistretti PJ, Renaud P. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS. Integr Biol. 2013;5:964–75.CrossRef
    2.Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature. 2014;515:274–U293.PubMedCentral CrossRef PubMed
    3.Li J, Le WD. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol. 2013;250:94–103.CrossRef PubMed
    4.Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin WC. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10:703–13.PubMedCentral CrossRef PubMed
    5.Nussbaum-Krammer CI, Morimoto RI. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. Dis Model Mech. 2014;7:31–9.PubMedCentral CrossRef PubMed
    6.Chronis N. Worm chips: Microtools for C. elegans biology. Lab Chip. 2010;10:432–7.CrossRef PubMed
    7.Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Edit. 2011;50:4774–807.CrossRef
    8.Sivagnanam V, Gijs MA. Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem Rev. 2013;113:3214–47.CrossRef PubMed
    9.Bakhtina NA, Korvink JG. Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv. 2014;4:4691–709.CrossRef
    10.Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, et al. Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases. Neuron. 2009;61:865–79.PubMedCentral CrossRef PubMed
    11.Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature. 2007;450. 63.
    12.Chung KH, Crane MM, Lu H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods. 2008;5:637–43.CrossRef PubMed
    13.Qin JH, Wheeler AR. Maze exploration and learning in C-elegans. Lab Chip. 2007;7:186–92.CrossRef PubMed
    14.Ma H, Jiang L, Shi WW, Qin JH, Lin BC. A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans. Biomicrofluidics. 2009;3(4):44114.CrossRef PubMed
    15.Lockery SR, Hulme SE, Roberts WM, Robinson KJ, Laromaine A, Lindsay TH, et al. A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip. 2012;12:2211–20.PubMedCentral CrossRef PubMed
    16.Guo SX, Bourgeois F, Chokshi T, Durr NJ, Hilliard MA, Chronis N, et al. Femtosecond laser nanoaxotomy lab-on-achip for in vivo nerve regeneration studies. Nat Methods. 2008;5:531–3.PubMedCentral CrossRef PubMed
    17.Samara C, Rohde CB, Gilleland CL, Norton S, Haggarty SJ, Yanik MF. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc Natl Acad Sci U S A. 2010;107:18342–7.PubMedCentral CrossRef PubMed
    18.Caceres ID, Valmas N, Hilliard MA, Lu H. Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies. PloS one. 2012;7:e35037.PubMedCentral CrossRef
    19.Krajniak J, Lu H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip. 2010;10:1862–8.CrossRef PubMed
    20.Krajniak J, Hao Y, Mak HY, Lu H. CLIP-continuous live imaging platform for direct observation of C. elegans physiological processes. Lab Chip. 2013;13:2963–71.CrossRef PubMed
    21.Hwang H, Krajniak J, Matsunaga Y, Benian GM, Lu H. On-demand optical immobilization of Caenorhabditis elegans for high-resolution imaging and microinjection. Lab Chip. 2014;14:3498–501.PubMedCentral CrossRef PubMed
    22.Aubry G, Zhan M, Lu H. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip. 2015;15:1424–31.CrossRef PubMed
    23.Rohde CB, Yanik MF. Subcellular in vivo time-lapse imaging and optical manipulation of Caenorhabditis elegans in standard multiwell plates. Nat Commun. 2011;2:271.CrossRef PubMed
    24.Chung K, Zhan M, Srinivasan J, Sternberg PW, Gong E, Schroeder FC, et al. Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip. 2011;11:3689–97.PubMedCentral CrossRef PubMed
    25.Shen XN, Arratia PE. Undulatory Swimming in Viscoelastic Fluids. Phys Rev Lett. 2011;106:208101.CrossRef PubMed
    26.Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55.CrossRef PubMed
    27.Kiernan MC. ALS and neuromuscular disease: in search of the Holy Grail. Lancet Neurol. 2014;13:13–4.CrossRef PubMed
    28.Jonsson PA, Ernhill K, Andersen PM, Bergemalm D, Brannstrom T, Gredal O, et al. Minute quantities of misfolded mutant superoxide dismutase-1 cause amyotrophic lateral sclerosis. Brain. 2004;127:73–88.CrossRef PubMed
    29.Rakhit R, Robertson J, Vande Velde C, Horne P, Ruth DM, Griffin J, et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat Med. 2007;13:754–9.CrossRef PubMed
    30.Pratt AJ, Shin DS, Merz GE, Rambo RP, Lancaster WA, Dyer KN, et al. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A. 2014;111:E4568–76.PubMedCentral CrossRef PubMed
    31.Gidalevitz T, Krupinski T, Garcia S, Morimoto RI. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 2009;5:e1000399.PubMedCentral CrossRef PubMed
    32.Jadiya P, Fatima S, Baghel T, Mir SS, Nazir A. A Systematic RNAi screen of neuroprotective genes identifies novel modulators of alpha-synuclein-associated effects in transgenic caenorhabditis elegans. mol neurobiol. 2015.
    33.Nollen EA, Garcia SM, van Haaften G, Kim S, Chavez A, Morimoto RI, et al. Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A. 2004;101:6403–8.PubMedCentral CrossRef PubMed
    34.van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS genetics. 2008;4:e1000027.PubMedCentral CrossRef PubMed
    35.Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002;99:10417–22.PubMedCentral CrossRef PubMed
    36.Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci. 2014;17:17–23.PubMedCentral CrossRef PubMed
    37.Cozzolino M, Ferri A, Carri MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal. 2008;10:405–43.CrossRef PubMed
    38.Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron. 1995;14:1105–16.CrossRef PubMed
    39.Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18:3241–50.PubMed
    40.Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov. 2013;12:465–83.PubMedCentral CrossRef PubMed
    41.Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, et al. The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell. 2013;154:430–41.PubMedCentral CrossRef PubMed
    42.Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451–7.CrossRef PubMed
    43.Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 2011;144:79–91.PubMedCentral CrossRef PubMed
    44.Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217:137–43.PubMedCentral CrossRef PubMed
    45.Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, et al. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell reports. 2015. doi:10.​1016/​j.​celrep.​2015.​02.​034 .PubMed
    46.Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 2004;117:4055–66.CrossRef PubMed
    47.Brignull HR, Moore FE, Tang SJ, Morimoto RI. Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. J Neurosci. 2006;26:7597–606.CrossRef PubMed
    48.Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem. 2003;86:165–72.CrossRef PubMed
    49.Regitz C, Wenzel U. Amyloid-beta (Abeta1-42)-induced paralysis in Caenorhabditis elegans is reduced by restricted cholesterol supply. Neurosci Lett. 2014;576:93–6.CrossRef PubMed
    50.Riboldi G, Nizzardo M, Simone C, Falcone M, Bresolin N, Comi GP, et al. ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Prog Neurobiol. 2011;95:133–48.CrossRef PubMed
    51.Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001;2:RESEARCH0002.PubMedCentral PubMed
    52.Ramot D, Johnson BE, Berry Jr TL, Carnell L, Goodman MB. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One. 2008;3:e2208.PubMedCentral CrossRef PubMed
    53.Xia YN, Whitesides GM. Soft lithography. Angew Chem Int Ed. 1998;37:551–75.CrossRef
  • 作者单位:Matteo Cornaglia (1)
    Gopalan Krishnamani (1)
    Laurent Mouchiroud (2)
    Vincenzo Sorrentino (2)
    Thomas Lehnert (1)
    Johan Auwerx (2)
    Martin A. M. Gijs (1)

    1. Laboratory of Microsystems, EPFL, CH-1015, Lausanne, Switzerland
    2. Laboratory for Integrative and Systems Physiology, EPFL, CH-1015, Lausanne, Switzerland
  • 刊物主题:Neurosciences; Neurology; Molecular Medicine;
  • 出版者:BioMed Central
  • ISSN:1750-1326
文摘
Background While many biological studies can be performed on cell-based systems, the investigation of molecular pathways related to complex human dysfunctions – e.g. neurodegenerative diseases – often requires long-term studies in animal models. The nematode Caenorhabditis elegans represents one of the best model organisms for many of these tests and, therefore, versatile and automated systems for accurate time-resolved analyses on C. elegans are becoming highly desirable tools in the field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700