Choosing voluntary exercise over sucrose consumption depends upon dopamine transmission: effects of haloperidol in wild type and adenosine A2AKO mice
详细信息    查看全文
  • 作者:Mercè Correa ; Marta Pardo ; Pilar Bayarri ; Laura López-Cruz…
  • 关键词:Accumbens ; Reward ; Cingulate ; Running wheel ; Sucrose
  • 刊名:Psychopharmacology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:233
  • 期:3
  • 页码:393-404
  • 全文大小:880 KB
  • 参考文献:Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–552PubMed CrossRef
    Bakshi VP, Kelley AE (1991) Dopaminergic regulation of feeding behavior: I. differential effects of haloperidol microinjection in three striatal subregions. Psychobiology 19:223–232
    Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177PubMed CrossRef
    Baum WM, Rachlin HC (1969) Choice as time allocation. J Exp Anal Behav 12:861–874PubMed PubMedCentral CrossRef
    Beeler JA, Frazier CR, Zhuang X (2012) Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr Neurosci 6:49PubMed PubMedCentral CrossRef
    Belke TW, Pierce WD (2014) Effect of sucrose availability and pre-running on the intrinsic value of wheel running as an operant and a reinforcing consequence. Behav Process 103:35–42CrossRef
    Belke TW, Wagner JP (2005) The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms. Behav Process 68(2):165–172CrossRef
    Belke TW, Oldford AC, Forgie MY, Beye JA (2005) Responding for sucrose and wheel-running reinforcement: effect of D-amphetamine. Behav Pharmacol 16:219–225PubMed CrossRef
    Berchicci M, Menotti F, Macaluso A, Di Russo F (2013) The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci 7:135PubMed PubMedCentral CrossRef
    Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198PubMed CrossRef
    Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–1370PubMed CrossRef
    Cosgrove KP, Hunter RG, Carroll ME (2002) Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences. Pharmacol Biochem Behav 73:663–671PubMed CrossRef
    Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton R, Fleshner MR, Gandevia SC, Gomez-Pinilla F, Greenwood BN, Hillman CH, Kramer AF, Levin BE, Moran TH, Russo-Neustadt AA, Salamone JD, Van Hoomissen JD, Wade CE, York DA, Zigmond MJ (2006) Neurobiology of exercise. Obesity 14:345–356PubMed CrossRef
    El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor knockout mice are partially protected against drug-induced catalepsy. Neuroreport 12:983–986PubMed CrossRef
    Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J, Müller CE, Correa M, Salamone JD (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience 166:1056–1067PubMed CrossRef
    Ferré S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casadó V, Hillion J, Torvinen M, Fanelli F, Benedetti PD, Goldberg SR, Bouvier M, Fuxe K, Agnati LF, Lluis C, Franco R, Woods A (2004) Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord 10:265–271PubMed CrossRef
    Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66:25–252PubMed CrossRef
    Floresco SB, St Onge JR, Ghods-Sharifi S, Winstanley CA (2008a) Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision-making. Cogn Affect Behav Neurosci 8:375–389PubMed CrossRef
    Floresco SB, Tse MT, Ghods-Sharifi S (2008b) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33:1966–1979PubMed CrossRef
    Friedman JH (2009) Fatigue in Parkinson’s disease patients. Curr Treat Options Neurol 11:186–190PubMed CrossRef
    Ghods-Sharifi S, Floresco SB (2010) Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell. Behav Neurosci 124:179–191PubMed CrossRef
    Hauber W, Sommer S (2009) Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex 19:2240–2247PubMed CrossRef
    Hosking JG, Floresco SB, Winstanley CA (2015) Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology 40:1005–1015PubMed CrossRef
    Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345PubMed CrossRef
    Keppel G (1991) Design and analysis: a researcher’s handbook. Prentice-Hall, Englewood Cliffs
    Lambert KG (2006) Rising rates of depression in today’s society: consideration of the roles of effort based rewards and enhanced resilience in day-to-day functioning. Neurosci Biobehav Rev 30:497–510PubMed CrossRef
    Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678PubMed CrossRef
    Lett BT, Grant VL, Byrne MJ, Koh MT (2000) Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Appetite 34:87–94PubMed CrossRef
    Levine AS, Kotz CM, Gosnell BA (2003) Sugars: hedonic aspects, neuroregulation, and energy balance. Am J Clin Nutr 78:834S–842SPubMed
    Mai B, Sommer S, Hauber W (2012) Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn Affect Behav Neurosci 12:74–84PubMed CrossRef
    McMillan DE, McClure GY, Hardwick WC (1995) Effects of access to a running wheel on food, water and ethanol intake in rats bred to accept ethanol. Drug Alcohol Depend 40:1–7PubMed CrossRef
    Mueller DT, Loft A, Eikelboom R (1997) Alternate-day wheel access: effects on feeding, body weight, and running. Physiol Behav 62:905–908PubMed CrossRef
    Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn S, Baqi Y, Müller CE, Lopez-Cruz L, Correa M, Salamone JD (2013) Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 33:19120–19130PubMed PubMedCentral CrossRef
    Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2012) Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62:2068–2077PubMed CrossRef
    Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (2013) Effect of subtype-selective adenosine receptor antagonists on basal or haloperidol-regulated striatal function: studies of exploratory locomotion and c-Fos immunoreactivity in outbred and A2AR KO mice. Behav Brain Res 247:217–226PubMed CrossRef
    Pardo M, Lopez-Cruz L, San Miguel N, Salamone JD, Correa M (2015) Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2 and D3 receptor antagonists. Psychopharmacology 232:2377–2391PubMed CrossRef
    Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402PubMed
    Pereira M, Farrar AM, Hockemeyer J, Müller CE, Salamone JD, Morrell JI (2011) Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat. Psychopharmacology 213:69–79PubMed PubMedCentral CrossRef
    Pierce WD, Epling WF, Boer DP (1986) Deprivation and satiation: the interrelations between food and wheel running. J Exp Anal Behav 46:199–210PubMed PubMedCentral CrossRef
    Pinna A, Wardas J, Cozzolino A, Morelli M (1999) Involvement of adenosine A2A receptors in the induction of c-fos expression by clozapine and haloperidol. Neuropsychopharmacology 20:44–51PubMed CrossRef
    Premack D, Premack AJ (1963) Increased eating in rats deprived of running. J Exp Anal Behav 6:209–212PubMed PubMedCentral CrossRef
    Randall PA, Pardo M, Nunes EJ, López-Cruz L, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2012) Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLoS One 7:e47934PubMed PubMedCentral CrossRef
    Robbins TW, Everitt BJ (2007) A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology 191:433–437PubMed CrossRef
    Routtenberg A (1968) “Self-starvation” of rats living in activity wheels: adaptation effects. J Comp Physiol Psychol 66:234–238PubMed CrossRef
    Salamone JD (1988) Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule induced activity, feeding and foraging in rats. Psychobiology 16:196–206
    Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25PubMed CrossRef
    Salamone JD, Correa M (2009) Dopamine/adenosine interactions involved in effort-related aspects of food motivation. Appetite 53:422–425PubMed PubMedCentral CrossRef
    Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485PubMed PubMedCentral CrossRef
    Salamone JD, Zigmond MJ, Stricker EM (1990) Characterization of the impaired feeding behavior in rats given haloperidol or dopamine depleting brain lesions. Neuroscience 39(17):24
    Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521PubMed CrossRef
    Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610PubMed CrossRef
    Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229PubMed CrossRef
    Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97:125–146PubMed PubMedCentral CrossRef
    Santerre JL, Nunes EJ, Kovner R, Leser CE, Randall PA, Collins-Praino LE, Lopez-Cruz L, Correa M, Baqi Y, Müller CE, Salamone JD (2012) The novel adenosine A(2A) antagonist prodrug MSX-4 is effective in animal models related to motivational and motor functions. Pharmacol Biochem Behav 102:477–487PubMed CrossRef
    Schweimer J, Saft S, Hauber W (2005) Involvement of catecholamine neurotransmission in the rat anterior cingulate in effort-related decision making. Behav Neurosci 119:1687–1692PubMed CrossRef
    Sherwin CM (1998) Voluntary wheel running: a review and novel interpretation. Anim Behav 56:11–27PubMed CrossRef
    Smith MA, Schmidt KT, Iordanou JC, Mustroph ML (2008) Aerobic exercise decreases the positive reinforcing effects of cocaine. Drug Alc Depend 988:129–135CrossRef
    Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Kessler RM, Zald DH (2012) Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci 32:6170–6176PubMed PubMedCentral CrossRef
  • 作者单位:Mercè Correa (1)
    Marta Pardo (1)
    Pilar Bayarri (1)
    Laura López-Cruz (1)
    Noemí San Miguel (1)
    Olga Valverde (2)
    Catherine Ledent (3)
    John D. Salamone (4)

    1. Department of Psychobiology, Universitat Jaume I, Castelló, Spain
    2. Department of Experimental and Health Sciences, Universitat Pompeu Fabra and IMIM-Hospital del Mar Research Institute, Barcelona, Spain
    3. Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, IRIBHM, Bruxelles, Belgium
    4. Department of Psychology, University of Connecticut, Storrs, CT, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Psychiatry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2072
文摘
Rationale Mesolimbic dopamine (DA) regulates behavioral activation and effort-related decision-making in motivated behaviors. Mesolimbic DA D2 receptors are co-localized with adenosine A2A receptors, and they interact in an antagonistic manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700