Quick foot placement adjustments during gait: direction matters
详细信息    查看全文
  • 作者:Wouter Hoogkamer ; Zrinka Potocanac ; Jacques Duysens
  • 关键词:Falls ; Locomotion ; Obstacle avoidance ; Online corrections ; Stepping accuracy ; Walking
  • 刊名:Experimental Brain Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:233
  • 期:12
  • 页码:3349-3357
  • 全文大小:532 KB
  • 参考文献:Chen HC, Ashton-Miller JA, Alexander NB, Schultz AB (1994) Effects of age and available response time on ability to step over an obstacle. J Gerontol 49:M227–M233. doi:10.-093/?geronj/-9.-.?M227 CrossRef PubMed
    Day BL, Lyon IN (2000) Voluntary modification of automatic arm movements evoked by motion of a visual target. Exp Brain Res 130:159-68. doi:10.-007/?s002219900218 CrossRef PubMed
    Den Otter AR, Geurts AC, de Haart M, Mulder T, Duysens J (2005) Step characteristics during obstacle avoidance in hemiplegic stroke. Exp Brain Res 161:180-92CrossRef
    Fonteyn EMR, Schmitz-Hübsch T, Verstappen CC et al (2010) Falls in spinocerebellar ataxias: results of the EuroSCA fall study. Cerebellum 9:232-39. doi:10.-007/?s12311-010-0155-z CrossRef PubMed
    Fonteyn EM, Heeren A, Engels JJ, Boer JJ, van de Warrenburg BP, Weerdesteyn V (2014) Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture 40:247-51. doi:10.-016/?j.?gaitpost.-014.-4.-90 CrossRef PubMed
    Forster A, Young J (1995) Incidence and consequences of falls due to stroke: a systematic inquiry. BMJ 311:83-6. doi:10.-136/?bmj.-11.-997.-3 PubMedCentral CrossRef PubMed
    Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748-50. doi:10.-038/-20748a0 CrossRef PubMed
    Heeren A, van Ooijen M, Geurts AC, Day BL, Janssen TW, Beek PJ, Roerdink M, Weerdesteyn V (2013) Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke. J Rehabil Med 45:616-22. doi:10.-340/-6501977-1180 CrossRef PubMed
    Heijnen MJH, Romine NL, Stumpf DM, Rietdyk S (2014) Memory-guided obstacle crossing: more failures were observed for the trail limb versus lead limb. Exp Brain Res 232:2131-142. doi:10.-007/?s00221-014-3903-3 CrossRef PubMed
    Hof AL, Gazendam MGJ, Sinke WE (2005) The condition for dynamic stability. J Biomech 38:1-. doi:10.-016/?j.?jbiomech.-004.-3.-25 CrossRef PubMed
    Hofstad CJ, van der Linde H, Nienhuis B, Weerdesteyn V, Duysens J, Geurts AC (2006) High failure rates when avoiding obstacles during treadmill walking in patients with a transtibial amputation. Arch Phys Med Rehabil 87:1115-122. doi:10.-016/?j.?apmr.-006.-4.-09 CrossRef PubMed
    Hofstad CJ, Weerdesteyn V, van der Linde H, Nienhuis B, Geurts AC, Duysens J (2009) Evidence for bilaterally delayed and decreased obstacle avoidance responses while walking with a lower limb prosthesis. Clin Neurophysiol 120:1009-015. doi:10.-016/?j.?clinph.-009.-3.-03 CrossRef PubMed
    Kim H-D, Brunt D (2009) The effect of a sensory perturbation on step direction or length while crossing an obstacle from quiet stance. Gait Posture 30:1-. doi:10.-016/?j.?gaitpost.-009.-2.-16 CrossRef PubMed
    Kim H-D, Brunt D (2013) Effect of a change in step direction from a forward to a lateral target in response to a sensory perturbation. J Electromyogr Kinesiol 23:851-57. doi:10.-016/?j.?jelekin.-013.-3.-01 CrossRef PubMed
    Laroche DP, Cook SB, Mackala K (2012) Strength asymmetry increases gait asymmetry and variability in older women. Med Sci Sports Exerc 44:2172-181. doi:10.-249/?MSS.-b013e31825e1d31-/span> PubMedCentral CrossRef PubMed
    Moraes R, Patla AE (2006) Determinants guiding alternate foot placement selection and the behavioral responses are similar when avoiding a real or a virtual obstacle. Exp Brain Res 171:497-10. doi:10.-007/?s00221-005-0297-2 CrossRef PubMed
    Moraes R, Allard F, Patla AE (2007) Validating determinants for an alternate foot placement selection algorithm during human locomotion in cluttered terrain. J Neurophysiol 98:1928-940. doi:10.-152/?jn.-0044.-006 CrossRef PubMed
    Nagano H, Begg RK, Sparrow WA, Taylor S (2011) Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking. Clin Biomech 26:962-68. doi:10.-016/?j.?clinbiomech.-011.-5.-13 CrossRef
    Nonnekes JH, Talelli P, de Niet M, Reynolds RF, Weerdesteyn V, Day BL (2010) Deficits underlying impaired visually triggered step adjustments in mildly affected stroke patients. Neurorehabil Neural Repair 24:393-00. doi:10.-177/-545968309348317-/span> CrossRef PubMed
    O’Loughlin JL, Robitaille Y, Boivin JF, Suissa S (1993) Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am J Epidemiol 137:342-54PubMed
    Patla AE (2003) Strategies for dynamic stability during adaptive human locomotion. IEEE Eng Med Biol Mag 22:48-2. doi:10.-109/?MEMB.-003.-195695 CrossRef PubMed
    Patla AE, Prentice SD, Rietdyk S, Allard F, Martin C (1999) What guides the selection of alternate foot placement during locomotion in humans. Exp Brain Res 128:441-50. doi:10.-007/?s002210050867 CrossRef PubMed
    Pélisson D, Prablanc C, Goodale MA, J
  • 作者单位:Wouter Hoogkamer (1)
    Zrinka Potocanac (1)
    Jacques Duysens (1) (2)

    1. Department of Kinesiology, Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuursevest 101 bus 1501, 3001, Louvain, Belgium
    2. Biomechatronics Lab, Mechatronics Department, Escola Politécnica da Universidade de S?o Paulo, S?o Paulo, Brazil
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
To prevent falls, adjustment of foot placement is a frequently used strategy to regulate and restore gait stability. While foot trajectory adjustments have been studied during discrete stepping, online corrections during walking are more common in daily life. Here, we studied quick foot placement adjustments during gait, using an instrumented treadmill equipped with a projector, which allowed us to project virtual stepping stones. This allowed us to shift some of the approaching stepping stones in a chosen direction at a given moment, such that participants were forced to adapt their step in that specific direction and had varying time available to do so. Thirteen healthy participants performed six experimental trials all consisting of 580 stepping stones, and 96 of those stones were shifted anterior, posterior or lateral at one out of four distances from the participant. Overall, long-step gait adjustments were performed more successfully than short-step and side-step gait adjustments. We showed that the ability to execute movement adjustments depends on the direction of the trajectory adjustment. Our findings suggest that choosing different leg movement adjustments for obstacle avoidance comes with different risks and that strategy choice does not depend exclusively on environmental constraints. The used obstacle avoidance strategy choice might be a trade-off between the environmental factors (i.e., the cost of a specific adjustment) and individuals-ability to execute a specific adjustment with success (i.e., the associated execution risk). Keywords Falls Locomotion Obstacle avoidance Online corrections Stepping accuracy Walking

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700