Quantum correlation swapping
详细信息    查看全文
  • 作者:Chuanmei Xie (1)
    Yimin Liu (2)
    Hang Xing (1)
    Jianlan Chen (1)
    Zhanjun Zhang (1)

    1. School of Physics and Material Science
    ; Anhui University ; Hefei ; 230039 ; Anhui ; China
    2. Department of Physics
    ; Shaoguan University ; Shaoguan ; 512005 ; China
  • 关键词:Quantum correlation repeater ; Quantum correlation swapping ; Werner state ; Bipartite von Neumann measurement ; Four quantum correlation measures
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:14
  • 期:2
  • 页码:653-679
  • 全文大小:561 KB
  • 参考文献:1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935) CrossRef
    2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935) CrossRef
    3. Ekert, A.: Quantum cryptography based on bell鈥檚 theorem. Phys. Rev. Lett. 67, 661 (1991) CrossRef
    4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell鈥檚 theorem. Phys. Rev. Lett. 68, 557 (1992) CrossRef
    5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002) CrossRef
    6. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein鈥揚odolsky鈥揜osen channels. Phys. Rev. Lett. 70, 1895 (1993) CrossRef
    7. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007) CrossRef
    8. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009) CrossRef
    9. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997) CrossRef
    10. Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998) CrossRef
    11. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein鈥揚odolsky鈥揜osen channels. Phys. Rev. Lett. 80, 1121 (1998) CrossRef
    12. Hillery, M., Bu啪ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999) CrossRef
    13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004) CrossRef
    14. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005) CrossRef
    15. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005) CrossRef
    16. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001) CrossRef
    17. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000) CrossRef
    18. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006) CrossRef
    19. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein鈥揚odolsky鈥揜osen pair block. Phys. Rev. A 68, 042317 (2003) CrossRef
    20. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006) CrossRef
    21. Briegel, H.J., D眉r, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998) CrossRef
    22. Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008) CrossRef
    23. Zukowski, M., Zeilinger, A., et al.: 鈥淓vent-ready-detectors鈥?Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993) CrossRef
    24. Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008) CrossRef
    25. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010) CrossRef
    26. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001) CrossRef
    27. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008) CrossRef
    28. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010) CrossRef
    29. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011) CrossRef
    30. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011) CrossRef
    31. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010) CrossRef
    32. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010) CrossRef
    33. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011) CrossRef
    34. Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger鈥揌orne鈥揨eilinger type states. Phys. Rev. A 84, 062328 (2011) CrossRef
    35. Ye, B.L., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Analytic expressions of quantum correlations in qutrit Werner states. Quantum Inf. Process. 12, 2355 (2013) CrossRef
    36. Tang, H.J., Liu, Y.M., Chen, J.L., Ye, B.L., Zhang, Z.J.: Analytic expressions of discord and geometric discord in Werner derivatives. Quantum Inf. Process. 13, 1331 (2014) CrossRef
    37. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011) CrossRef
    38. Dakic, B., Lipp, Y.O., Ma, X., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012) CrossRef
    39. Li, B., Fei, S.M., Wang, Z.X., Fan, H.: Assisted state discrimination without entanglement. Phys. Rev. A 85, 022328 (2012) CrossRef
    40. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008) CrossRef
    41. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008) CrossRef
    42. Maziero, J., C茅leri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009) CrossRef
    43. Maziero, J., Werlang, T., Fanchini, F.F., C茅leri, L.C., Serra, R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010) CrossRef
    44. Fanchini, F.F., Werlang, T., Brasil, C.A., et al.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010) CrossRef
    45. Streltsov, A., Kampermann, H., Bruss, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011) CrossRef
    46. Hu, X.Y., et al.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011) CrossRef
    47. Campbell, S., Apollaro, T.J.G., et al.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011) CrossRef
    48. Hu, X.Y., et al.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012) CrossRef
    49. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012) CrossRef
    50. Ciccarello, F., Giovannetti, V.: Local-channel-induced rise of quantum correlations in continuous variable systems. Phys. Rev. A 85, 022108 (2012) CrossRef
    51. Gessner, M., Laine, E.M., Breuer, H.P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012) CrossRef
    52. Madsen, L.S., Berni, A., Lassen, M., Andersen, U.L.: Experimental investigation of the evolution of Gaussian quantum discord in an open system. Phys. Rev. Lett. 109, 030402 (2012) CrossRef
    53. Zou, C., Chen, X., et al.: Photonic simulation of system鈥揺nvironment interaction: non-Markovian processes and dynamical decoupling. Phys. Rev. A 88, 063806 (2013) CrossRef
    54. Dajka, J., et al.: Swapping of correlations via teleportation with decoherence. Phys. Rev. A 87, 022301 (2013) CrossRef
    55. Lanyon, B.P., Jurcevic, P., Hempel, C., et al.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013) CrossRef
    56. Vogl, U., Glasser, R.T., Glorieux, Q., et al.: Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A 87, 010101(R) (2013) CrossRef
    57. Benedetti, C., Shurupov, A.P., Paris, M.G.A., et al.: Experimental estimation of quantum discord for a polarization qubit and the use of fidelity to assess quantum correlations. Phys. Rev. A 87, 052136 (2013) CrossRef
    58. Xie, C.M., Liu, Y.M., Li, G.F., Zhang, Z.J.: A note on quantum correlations in Werner states under two collective noises. Quantum Inf. Process. (2014). doi:10.1007/s11128-014-0822-y
    59. William, K.W.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998) CrossRef
    60. Gross, D., Flammia, S.T., Eisert, J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009) CrossRef
    61. Modlwska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008) CrossRef
    62. Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. EPL 96, 40005 (2011) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
Quantum correlations (QCs), including quantum entanglement and those different, are important quantum resources and have attracted much attention recently. Quantum entanglement swapping as a kernel technique has already been applied to quantum repeaters for successfully generating long-distance shared maximally entangled qubit states. Long-distance shared QCs containing shared entanglements are useful and important for some quantum information processing in future quantum networks. In this paper, the concept of quantum entanglement repeater is extended to that of QC repeater by generalizing quantum entanglement swapping to QC swapping. Specifically, the swapping of QCs in a pair of Werner states through a local bipartite von Neumann measurement is treated. Four different QC measures, i.e., entanglement of formation (William in Phys Rev Lett 80:2245, 1998), quantum discord (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008) and ameliorated MID (Girolami et al. in J Phys A 44:352002, 2011), are employed to characterize and quantify QCs. Properties and thresholds of all QCs which occur in the swapping process are revealed, and two different phenomena are exposed and explained. It is found that a long-distance shared QC can be generated from two short-distance ones via QC swapping indeed; however, its amount cannot exceed the minimum one among the QCs in the two initial states and in the measuring state as far as the four quantifiers are concerned.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700