Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging
详细信息    查看全文
  • 作者:Vittorio Sansalone ; Davide Gagliardi…
  • 关键词:Cortical bone ; Microstructure ; Haversian porosity ; Tissue mineral density ; Elastic properties ; SR ; \(\mu \) ; CT imaging ; Multiscale modelling ; Continuum micromechanics ; Stochastic modelling ; MaxEnt principle ; Uncertainty quantification
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 页码:111-131
  • 全文大小:2,376 KB
  • 参考文献:Aoubiza B, Crolet JM, Meunier A (1996) On the mechanical characterization of compact bone structure using the homogenization theory. J Biomech 29(12):1539–1547CrossRef
    Apostol L, Boudousq V, Basset O, Odet C, Yot S, Tabary J, Dinten JM, Boiler E, Kotzki PO, Peyrin F (2006) Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture. Med Phys 33(9):3546–3556CrossRef
    Arnold L (1973) Stochastic differential equations: theory and applications. Wiley, New York
    Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A (2006) The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone 38(1):136–144CrossRef
    Basaruddin KS, Takano N, Nakano T (2015) Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling. Comput Methods Biomech Biomed Eng 18(2):162–174CrossRef
    Baum T, Karampinos DC, Liebl H, Rummeny EJ, Waldt S, Bauer JS (2013) High-resolution bone imaging for osteoporosis diagnostics and therapy monitoring using clinical MDCT and MRI. Curr Med Chem 20(38):4844–4852CrossRef
    Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24(1):57–64CrossRef
    Bensamoun S, Gherbezza J-M, de Belleval J-F, Ho Ba Tho M-C (2004a) Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin Biomech 19:639–647CrossRef
    Bensamoun S, Ho Ba Tho M-C, Luu S, Gherbezza J-M, de Belleval J-F (2004b) Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 37:503–510CrossRef
    Blanchard R, Dejaco A, Bongaers E, Hellmich C (2013) Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 46(15):2710–2721CrossRef
    Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70(6):503–511CrossRef
    Bourne BC, van der Meulen MC (2004) Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech 37(5):613–621CrossRef
    Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16(7):1308–1317CrossRef
    Bousson V, Peyrin F, Bergot C, Hausard M, Sautet A, Laredo JD (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19(5):794–801CrossRef
    Bouxsein ML (2003) Bone quality: Where do we go from here? Osteoporos Int 14(S5):S118–S127CrossRef
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Mller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486CrossRef
    Broz JJ, Simske SJ, Greenberg AR (1995) Material and compositional properties of selectively demineralised cortical bone. J Biomech 28(11):1357–1368CrossRef
    Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 469(8):2179–2193CrossRef
    Burr DB (2004) Bone quality: understanding what matters. J Musculoskelet Neuronal Interact 4(2):184–186
    Chappard C, Basillais A, Benhamou L, Bonassie A, Brunet-Imbault B, Bonnet N, Peyrin F (2006) Comparison of synchrotron radiation and conventional X-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads. Med Phys 33(9):3568–3577CrossRef
    Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, Beck TJ, Reeve J (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16(7):1318–1328CrossRef
    Currey JD (1988) The effect of porosity and mineral content on the young’s modulus of elasticity of compact bone. J Biomech 21(2):131–139CrossRef
    Deuerling JM, Yue W, Espinoza Orías AA, Roeder RK (2009) Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone. J Biomech 42(13):2061–2067CrossRef
    Devroye L (1986) Non uniform random variate generation. Springer, New YorkMATH CrossRef
    Dong X, Guo XE (2006) Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng 128(3):309–316MathSciNet CrossRef
    Dong X, Wang X (2013) Assessment of bone fragility with clinical imaging modalities. Hard Tissue 2(1):7CrossRef
    Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469(8):2128–2138CrossRef
    Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, Stampa B, Timm W, Genant HK (2009) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body ct scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45(1):110–118CrossRef
    Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241:376–396MathSciNet MATH CrossRef
    Feller W (1971) An introduction to probability theory and its applications. Wiley, New YorkMATH
    Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagenmineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef
    Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620CrossRef
    Genant HK, Jiang Y (1068) Advanced imaging assessment of bone quality. Ann N Y Acad Sci 410–428:2006
    Genant HK, Gordon C, Jiang Y, Link TM, Hans D, Majumdar S, Lang TF (2000) Advanced imaging of the macrostructure and microstructure of bone. Horm Res Paediatr 54(S1):24–30CrossRef
    Ghanbaria J, Naghdabadi R (2009) Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure. J Biomech 42(10):1560–1565CrossRef
    Graeff C, Marin F, Petto H, Kayser O, Reisinger A, Peña J, Zysset P, Glüer CC (2013) High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not dxa, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone 52(2):568–577CrossRef
    Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12(5):697–711CrossRef
    Granke M, Grimal Q, Saïed A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49(5):1020–1026CrossRef
    Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïed A, Laugier P (2013) Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 8(3):e58043CrossRef
    Granke M, Grimal Q, Parnell WJ, Raum K, Gerisch A, Peyrin F, Saïed A, Laugier P (2015) To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Acta Biomater 12:207–215CrossRef
    Grimal Q, Raum K, Gerisch A, Laugier P (2011a) A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 10:925–937CrossRef
    Grimal Q, Rus G, Parnell WJ, Laugier P (2011b) A two-parameter model of the effective elastic tensor for cortical bone. J Biomech 44(8):1621–1625CrossRef
    Grimal Q, Rohrbach D, Grondin J, Barkmann R, Glüer CC, Raum K, Laugier P (2014) Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. Ultrasound Med Biol 40(5):1015–1026CrossRef
    Guglielmi G, Muscarella S, Bazzocchi A (2011) Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics 31(5):1343–1364CrossRef
    Guilleminot J, Soize C (2012) Probabilistic modeling of apparent tensors in elastostatics: a maxent approach under material symmetry and stochastic boundedness constraints. Probab Eng Mech 28(SI):118–124CrossRef
    Guilleminot J, Soize C (2013a) On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J Elast 111(2):109–130MathSciNet MATH CrossRef
    Guilleminot J, Soize C (2013b) tochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media. Multiscale Model Simul 11(3):840–870MathSciNet MATH CrossRef
    Guilleminot J, Noshadravan A, Soize C, Ghanem RG (2011) A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures. Comput Methods Appl Mech Eng 200(17–20):1637–1648MathSciNet MATH CrossRef
    Haiat G, Naili S, Grimal Q, Talmant M, Desceliers C, Soize C (2009) Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission. J Acoust Soc Am 125(6):4043–4052CrossRef
    Haiat G, Naili S, Vu M-B, Desceliers C, Soize C (2011) Equivalent contributing depth investigated by a lateral wave with axial transmission in heterogeneous viscoelastic cortical bone. J Acoust Soc Am 129(4):EL114–EL120CrossRef
    Halmos P (1976) Measure theory, volume 1: basics, 2nd edn. Springer, Berlin
    Heilmann P, Wüster C, Prolingheuer C, Götz M, Ziegler R (1998) Measurement of forearm bone mineral density: comparison of precision of five different instruments. Calcif Tissue Int 62(2):383–387CrossRef
    Hellmich C, Barthelemy J, Dormieux L (2004a) Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur J Mech A Solids 23:783– 810MATH CrossRef
    Hellmich C, Ulm F-J, Dormieux L (2004b) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech Model Mechanobiol 2:219–238CrossRef
    Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 23:783–810
    Hulmes DJ (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137:2–10CrossRef
    Ito M (2000) Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab 29(2):131–140CrossRef
    Jaynes ET (1957a) Information theory and statistical mechanics. Phys Rev 106(4):620–630MathSciNet MATH CrossRef
    Jaynes ET (1957b) Information theory and statistical mechanics. Phys Rev 108(2):171–190MathSciNet MATH CrossRef
    Jumarie G (2000) Maximum entropy. Information without probability and complex fractals. Kluwer Academic Publishers, DordrechtMATH CrossRef
    Kapur JN, Kesavan HK (1992) Entropy optimization principles with applications. Academic Press, San DiegoMATH CrossRef
    Knuth DE (1981) The art of computer programming. Seminumerical algorithms, vol 2. Addison-Wesley, BostonMATH
    Kotha SP, Guzelsu N (2000) The effects of interphase and bonding on the elastic modulus of bone: changes with age-related osteoporosis. Med Eng Phys 22(8):575–585CrossRef
    Krée P, Soize C (1986) Mathematics of random phenomena. Reidel, DordrechtMATH CrossRef
    Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F (2012) X-ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS One 7(8):e35691CrossRef
    Lewiecki EM (2013) Imaging technologies for assessment of skeletal health in men. Curr Osteoporos Rep 11(1):1–10CrossRef
    Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263(1):3–17MathSciNet CrossRef
    Manske SL, Liu-Ambrose T, Cooper DML, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20(3):445–453CrossRef
    Mathieu V, Chappard C, Vayron R, Michel A, Haïat G (2013) Radial anatomic variation of ultrasonic velocity in human cortical bone. Ultrasound Med Biol 39(11):2185–2193CrossRef
    Matlab. Matlab R2007b documentation
    Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRef
    Naili S, Vu MB, Grimal Q, Talmant M, Desceliers C, Soize C, Haiat G (2010) Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission. J Acoust Soc Am 127(4):2622–2634CrossRef
    Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials, 2nd edn. Applied Mathematics and Mechanics. North-Holland
    Nishiyama KK, Boyd SK (2011) In vivo assessment of trabecular and cortical bone microstructure. Clin Calcium 21(7):1011–1019
    Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29(11):2672–2681CrossRef
    Parnell WJ, Vu MB, Grimal Q, Naili S (2012) Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Biomech Model Mechanobiol 11(6):883–901CrossRef
    Perilli E, Parkinson IH, Reynolds KJ (2012) Micro-CT examination of human bone: from biopsies towards the entire organ. Ann Ist Super Sanita 48(1):75–82
    Predoi-Racila M, Crolet JM (2008) Human cortical bone: the sinupros model. Comput Methods Biomech Biomed Eng 11(2):169–187CrossRef
    Reisinger AG, Pahr DH, Zysset PK (2011) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10(1):67–77CrossRef
    Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102CrossRef
    Rossini M, Viapiana O, Adami S (1998) Instrumental diagnosis of osteoporosis. Aging 10(3):240–248
    Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, HobokenMATH CrossRef
    Sansalone V, Naili S, Bousson V, Bergot C, Peyrin F, Laredo JD, Haiat G (2010) Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. J Biomech 43(10):1857–1863CrossRef
    Sansalone V, Bousson V, Naili S, Bergot C, Peyrin F, Laredo JD, Haiat G (2012a) Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: Impact on biomechanical properties. Bone 50(4):876–884CrossRef
    Sansalone V, Bousson V, Naili S, Bergot C, Peyrin F, Laredo JD, Haiat G (2012b) Effects of the axial variations of porosity and mineralization on the elastic properties of the human femoral neck. Comput Model Eng Sci 87(5):387–409
    Sansalone V, Naili S, Desceliers C (2014) A stochastic homogenization approach to estimate bone elastic properties. CR Mec 342(5):326–333CrossRef
    Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med Biol 33(12):1933–1942CrossRef
    Sasso M, Haiat G, Yamato Y, Naili S, Matsukawa M (2008) Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone. J Biomech 41(2):347–355CrossRef
    Schrof S, Varga P, Galvis L, Raum K, Masic A (2014) 3D raman mapping of the collagen fibril orientation in human osteonal lamellae. J Struct Biol 187(3):266–275CrossRef
    Shannon C (1948) A mathematical theory of communication. Tech J 27, Bell Syst
    Soize C (2001) Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J Acoust Soc Am 109(5):1979–1996CrossRef
    Soize C (2006) Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64MathSciNet MATH CrossRef
    Soize C (2008) Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab Eng Mech 23(2–3):307–323CrossRef
    Spiesz EM, Kaminsky W, Zysset PK (2011) A quantitative collagen fibers orientation assessment using birefringence measurements: Calibration and application to human osteons. J Struct Biol 176(3):302–306CrossRef
    Sreenivasan D, Watson M, Callon K, Dray M, Das R, Grey A, Cornish J, Fernandez J (2013) Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone. Med Eng Phys 35(12):1793–1800CrossRef
    Suquet P (ed) (1997) Continuum micromechanics. Number 377 in CISM lecture notes. Springer, Wien
    Suvorov AP, Dvorak GJ (2002) Rate form of the Eshelby and Hill tensors. Int J Solids Struct 39(21):5659–5678MATH CrossRef
    Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, Zilberman Y, Ortiz C, Gazit D (2008) Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng A 14(10):1709–1720CrossRef
    Vajda EG, Bloebaum RD (1999) Age-related hypermineralization in the female proximal human femur. Anat Rec 255(2):202–211CrossRef
    Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLOS One 9(11):e112625CrossRef
    Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F (2013) Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 9(9):8118–8127CrossRef
    Vayron R, Barthel E, Mathieu V, Soffer E, Anagnostou F, Haïat G (2012) Nanoindentation measurements of biomechanical properties in mature and newly formed bone tissue surrounding an implant. J Biomech Eng 134(2):021007CrossRef
    Vayron R, Matsukawa M, Tsubota R, Mathieu V, Barthel E, Haïat G (2014) Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time. Phys Med Biol 59(6):1389–1406CrossRef
    Wagner DW, Lindsey DP, Beaupre GS (2011) Deriving tissue density and elastic modulus from microCT bone scans. Bone 49(5):931–938CrossRef
    Yamato Y, Matsukawa M, Otani T, Yamazaki K, Nagano A (2006) Distribution of longitudinal wave properties in bovine cortical bone in vitro. Ultrasonics 44(Suppl 1):e233–e237CrossRef
    Yao H, Dao M, Carnelli D, Tai K, Ortiz C (2011) Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids 59:64–74MATH CrossRef
    Yoon YJ, Cowin SC (2008a) The estimated elastic constants for a single bone osteonal lamella. Biomech Model Mechanobiol 7(1):1–11CrossRef
    Yoon YJ, Cowin SC (2008b) An estimate of anisotropic poroelastic constants of an osteon. Biomech Model Mechanobiol 7(1):13–26CrossRef
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736CrossRef
  • 作者单位:Vittorio Sansalone (1)
    Davide Gagliardi (1)
    Christophe Desceliers (2)
    Valérie Bousson (3)
    Jean-Denis Laredo (3)
    Françoise Peyrin (4) (5)
    Guillaume Haïat (1)
    Salah Naili (1)

    1. Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 61 avenue du Général de Gaulle, 94010, Créteil Cedex, France
    2. Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5, bd Descartes, 77454, Marne-la-Vallée, France
    3. Sorbonne Paris Cité, UMR CNRS 7052 B2OA, Université Paris Diderot, 10, avenue de Verdun, 75010, Paris, France
    4. CREATIS, INSERM U1044, UMR CNRS 5220, INSA Lyon, Université de Lyon, 69621, Villeurbanne Cedex, France
    5. ESRF, BP 220, 38043, Grenoble Cedex, France
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Biomedical Engineering
    Mechanics
    Biophysics and Biomedical Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-7940
文摘
Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting the experimental data (input) may question the reliability of the results predicted by the model (output). Since input data are uncertain, deterministic approaches are limited and new modelling paradigms are required. In this paper, a novel stochastic multiscale model is developed to estimate the elastic properties of bone while taking into account uncertainties on bone composition. Effective elastic properties of cortical bone tissue were computed using a multiscale model based on continuum micromechanics. Volume fractions of bone components (collagen, mineral, and water) were considered as random variables whose probabilistic description was built using the maximum entropy principle. The relevance of this approach was proved by analysing a human bone sample taken from the inferior femoral neck. The sample was imaged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian porosity and tissue mineral density extracted from these images supplied the experimental information needed to build the stochastic models of the volume fractions. Thus, the stochastic multiscale model provided reliable statistical information (such as mean values and confidence intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler “nominal model”, accounting for the main features of the stochastic model, was investigated. It was shown that such a model does exist, and its relevance was discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700