Non-isoflavone phytoestrogenic compound contents of various legumes
详细信息    查看全文
  • 作者:Nevzat Konar (1)
  • 关键词:Legume ; Phytoestrogen ; Lignan ; Bioflavonoid ; Coumestrol
  • 刊名:European Food Research and Technology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:236
  • 期:3
  • 页码:523-530
  • 全文大小:258KB
  • 参考文献:1. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2908-006 CrossRef
    2. Key PE, Finglas PM, Coldham N, Botting N, Oldfield MF, Wood R (2006) An international quality assurance scheme for the quantitation of daidzein and genistein in food, urine and plasma. Food Chem 96(2):261-72 CrossRef
    3. Adlercreutz H, Mazur W (1998) Overview of naturally occuring endocrine-active substances in human diet. In: Dunalf GE, Olin SS, Scimeca JA, Thomas JA (eds) Human diet and endocrine modulation. ILSI Press, Washington, DC, pp 134-85
    4. Fritz KL, Seppanen CM, Kurzer MS, Csallany AS (2003) The in vivo antioxidant activity of soybean isoflavones in human subjects. Nutr Res 23:479-87 CrossRef
    5. Prakash D, Upadhyay G, Singh BN, Singh BN (2007) Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean ( / Glycine max). Food Chem 104(2):783-90 CrossRef
    6. Committee on Toxicity of Chemicals in Food (2003) Consumer products and the environment. Phytoestrogens and Health. Food Standards Agency, London
    7. Gül?in ?, Elias R, Gepdinemen A (2006) Antioxidant activity of lignans from fringe tree ( / Chionanthus virginicus L.). Eur Food Res Technol 223:759-67 CrossRef
    8. Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46(3):207-19 CrossRef
    9. Schwartz H, Sontag G, Plumb J (2009) Inventory of phytoestrogen databases. Food Chem 113:736-47 CrossRef
    10. Antignac JP, Gaudin-Hirret I, Naegeli H, Cariou R, Elliot C, Le Bizec B (2009) Multi functional sample preparation procedure for measuring phytoestrogens in milk, cereals and baby food by liquid-chromatography tandem mass spectrometry with subsequent determination of their estrogenic activity using transcriptomic assay. Anal Chim Acta 637:55-3 CrossRef
    11. Bacaloni A, Cavaliere C, Faberi A, Foglia P, Samperi R, Lagana A (2005) Determination of isoflavones and coumestrol in river water and domestic wastewater sewage treatment plants. Anal Chim Acta 531(2):229-37 CrossRef
    12. Kirihata Y, Kawarabayashi T, Imasishi S, Sugimoto M, Kume SI (2008) Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice. J Reprod Dev 54(1):35-1 CrossRef
    13. Hong YH, Wang SC, Hsu C, Lin BF, Kuo YH, Huang CJ (2011) Phytoestrogenic compounds in alfalfa sprout ( / Medicago sativa) beyond coumestrol. J Agric Food Chem 59(1):131-37 CrossRef
    14. Sun JS, Li YY, Liu MH, Sheu SY (2007) Effects of coumestrol on neonatal and adult mice osteoblasts activities. J Biomed Mater Res A 81(1):214-23
    15. Kuiper GGJM, Lemmen JG, Carlsson BO, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252-263 CrossRef
    16. Moon HJ, Seak JH, Kim SS, Rhee GS, Lee RD, Yang JY, Chae SY, Kim SH, Kim JY, Chung JY, Kim JM, Chung SY (2009) Lactational coumestrol exposure increases ovarian apoptosis in adult rats. Arch Toxicol 83:601-08 CrossRef
    17. Ndebele K, Graham B, Tchouwou PB (2010) Estrogenic activity of coumestrol, DDT, and TCDD in human cervical cancer cells. Int J Environ Res Public Health 7:2045-056 CrossRef
    18. Hanske L, Loh G, Sczesny S, Blaut M, Braune A (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095-102 CrossRef
    19. Rezai-Zadeh K, Erhart J, Bai Y, Sanberg PR, Bickford P, Tan J, Shytle RD (2008) Apigenin and luteolin modulate microglial activation via inhibition of STATI-induced CD 40 expression. J Neuroinflammation 5:41-1 CrossRef
    20. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414-420 CrossRef
    21. Franzen CA, Amargo E, Todorovic V (2009) The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signalling mechanism. Cancer Prev Res 2(9):830-41 CrossRef
    22. Siddique YH, Beg T, Afzal M (2008) Antigenotoxic effect of apigenin aganist anti-cancerous drugs. Toxicol In Vitro 22:625-31 CrossRef
    23. Miyoshi N, Naniwa K, Yamada T, Osawa T, Nakamura Y (2007) Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: The role in the interruptive apoptotic signal. Arch Biochem Biophys 466:274-82 CrossRef
    24. Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemo prevention: progress, potential and promise. Int J Oncol 30:233-45
    25. Zhao M, Ma U, Zhu HY, Zhang XH, Du ZY, Xu YJ (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc 37 and Hsp 90. Mol Cancer 10:104-18 CrossRef
    26. Aalinekel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz JA (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate 68:1773-789 CrossRef
    27. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315-25 CrossRef
    28. Boots AW, Haenen GRMM, Bast A (2008) Health effects of quercetin from antioxidant to nutraceutical. Eur J Pharmacol 585:325-37 CrossRef
    29. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141-148 CrossRef
    30. Middleton EJ, Kandaswamic C (1986) The impact of plant flavonoids on mammalian biology: implication for immunity, inflammation and cancer. In: Harborne JB (ed) The flavonoids: advances in research since. Chapman & Hall, London, pp 619-52
    31. Moon YJ, Wang L, DiCenzo R, Morris ME (2008) Quercetin pharmacokinetics in humans. Biopharm Drug Dispos 29:205-17 CrossRef
    32. Morota YJ, Terao J (2003) Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 417:12-7 CrossRef
    33. Gül?in ? (2006) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345-91 CrossRef
    34. Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulus NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the mediterranean countries. Food Chem 121:682-90 CrossRef
    35. Kim J, Hong S, Jung W, Yu C, Ma K, Gwag J, Chung I (2007) Comparison of isoflavones composition in seed, embryo, cotyledon and seed coat of cooked-with-rice and vegetable soybean ( / Glycine max L.) varieties. Food Chem 102:738-44 CrossRef
    36. Konar N, Poyrazo?lu ES, Demir K, Art?k N (2012) Determination of conjugated and free isoflavones in some legumes by LC–MS/MS. J Food Compos Anal 25(2):173-78 CrossRef
    37. Konar N, Poyrazoglu ES, Demir K, Art?k N (2012) Effect of different sample preparation methods on isoflavone, lignan, coumestan, and flavonoid contents of various vegetables determined by triple quadrupole LC-MS/MS. J Food Compos Anal 26(1-):26-5 CrossRef
    38. Truswell AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56:1-4 CrossRef
    39. Demirba? A (2005) β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90:737-77
    40. Giannakoula AE, Ilias IF, Maksimovic JJD, Maksimovic VM, Zivanovic BD (2012) The effects of plant growth regulators or growth yield, and phenolic profile of lentil plants. J Food Compos Anal 28:46-3 CrossRef
    41. Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37-4 CrossRef
    42. Wu Q, Wang M, Simon SJE (2004) Analytical methods to determine phytoestrogenic compounds. J Chromatogr B 812:325-55
    43. Mazur W, Duke JA, Wahala K, Raskku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. Nutr Biochem 9:193-00 CrossRef
    44. Franke A, Custer LJ, Cerna CM, Narala K (1995) Rapid HPLC analysis of dietary phytoestrogens from legumes and human urine. Proc Soc Exp Biol Med 208:18-6
    45. Oomah B, Patras A, Rawson A, Singh N, Compos-Vega R (2011) In: Tiwari BK, Gowen A, McKenna B (eds) Pulse foods. Academic Press, London
    46. Kuhnle GGC, Dell’Aquila C, Aspinall SM, Runswick SA, Joosen AMCP, Mulligan AA, Bingham SA (2009) Phytoestrogen content of fruits and vegetables commonly consumed in the UK based on LC–MS and 13C-labelled standards. Food Chem 116:542-54 CrossRef
    47. Clarke DB, Bailey V, Lloyd AS (2008) Determination of phytoestrogens in soy based dietary supplements by LC–MS/MS. Food Addit Contam 25(5):534-47 CrossRef
  • 作者单位:Nevzat Konar (1)

    1. Ankara University Food Safety Institute, 06110, Diskapi, Ankara, Turkey
  • ISSN:1438-2385
文摘
Widely consumed legumes including chickpeas, red kidney beans, haricot beans, yellow lentils, red lentils and green lentils were analysed to determine the content of non-isoflavone phytoestrogenic compounds such as quercetin, rutin, apigenin, coumestrol and lignan (matairesinol and secoisolariciresinol). Methanolic extracts obtained by ultrasound-assisted extraction were analysed by the triple quadrupole LC–MS/MS. Red kidney beans were the best source of quercetin (603.2?±?307.2?μg/kg) and rutin (73.4?±?14.0?μg/kg). Apigenin and secoisolariciresinol contents were the highest in yellow lentils (18.5?±?0.84?μg/kg) and haricot beans (451.9?±?192.2?μg/kg), respectively. Coumestrol contents of haricot beans (18.5?±?1.45?μg/kg) and red kidney beans (18.5?±?1.26?μg/kg) were equal to each other, and these were determined as the highest coumestrol content values. The best sources of matairesinol occurred in green lentils (28.2?±?0.18?μg/kg) and chickpeas (27.7?±?1.83?μg/kg). Differences between contents of each sample of the same legume were significant and remarkable, especially for quercetin and secoisolariciresinol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700