Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis
详细信息    查看全文
  • 作者:Anastasia V. Galochkina ; Vadim B. Anikin ; Vasily A. Babkin…
  • 刊名:Archives of Virology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:161
  • 期:4
  • 页码:929-938
  • 全文大小:1,008 KB
  • 参考文献:1.Knowles E, Delwart E, Gorbalenya AE, Hovi T, Hyypia T, King AMQ, LinBerg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, Zell R (2014) Picornaviridae: 26 genera, 46 species and growing, p 98. Abstr. Europic 18th Int. Picornavirus Meet., Blankenberge, Belgium<br>2.Blauwet LA, Cooper LT (2010) Myocarditis. Prog Cardiovasc Dis 52:274–288. doi:10.​1016/​j.​pcad.​2009.​11.​006 CrossRef PubMed <br>3.Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R (2011) Enterovirus infections of the central nervous system. Virology 411:288–305. doi:10.​1016/​j.​virol.​2010.​12.​014 CrossRef PubMed PubMedCentral <br>4.Kaprio J, Tuomilehto J, Koskenvuo M, Romanov K, Reunanen A, Eriksson J et al (1992) Concordance for type 1 (insulin dependent) and type 2 (non insulin dependent) diabetes in a population-based cohort of twins in Finland. Diabetologia 35:1060–1067CrossRef PubMed <br>5.Kyvik KO, Green A, Beck-Nielsen H (1995) Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. Br Med J 311:913–917CrossRef <br>6.Onkamo P, Vaananen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of Type 1 diabetes—the analysis of the data on published incidence trends. Diabetologia 42:1395–1403CrossRef PubMed <br>7.Todd JA (1999) From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 21:164–174CrossRef PubMed <br>8.Yoon JW, Austin M, Onodera T, Notkins AL (1979) Virus-induced diabetes mellitus. N Engl J Med 300:1173–1179CrossRef PubMed <br>9.Champsaur HF, Dussaix E, Samolyk D, Fabre M, Bach C, Assan R (1980) Diabetes and Coxsackie virus B5 infection. Lancet i:251CrossRef <br>10.Green J, Casabonne D, Newton R (2004) Coxsackie B virus serology and Type 1 diabetes mellitus: a systematic review of published case-control studies. Diabet Med 21:507–514CrossRef PubMed <br>11.Stevens T, Conwell DL, Zuccaro G (2004) Pathogenesis of chronic pancreatitis: an evidence-based review of past theories and recent developments. Am J Gastroenterol 99:2256–2270CrossRef PubMed <br>12.Gu R, Shampang A, Reilly A, Fisher D, Glass W, Ramsingh AI (2009) IL-10 is pathogenic during the development of coxsackievirus B4-induced chronic pancreatitis. Virology 395:77–86. doi:10.​1016/​j.​virol.​2009.​09.​005 CrossRef PubMed PubMedCentral <br>13.Zhu FC, Liang ZL, Li XL, Ge HM, Meng FY, Mao QY, Zhang YT, Hu YM, Zhang ZY, Li JX, Gao F, Chen QH, Zhu QY, Chu K, Wu X, Yao X, Guo HJ, Chen XQ, Liu P, Dong YY, Li FX, Shen XL, Wang JZ (2013) Immunogenicity and safety of an enterovirus 71 vaccine in healthy Chinese children and infants: a randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 381:1037–1045. doi:10.​1016/​S0140-6736(12)61764-4 CrossRef PubMed <br>14.Shang L, Xu M, Yin Z (2013) Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 97:183–194. doi:10.​1016/​j.​antiviral.​2012.​12.​005 CrossRef PubMed <br>15.Deng CL, Yeo H, Ye HQ, Liu SQ, Shang BD, Gong P, Alonso S, Shi PY, Zhang B (2014) Inhibition of enterovirus 71 by adenosine analog NITD008. J Virol 88:11915–11923. doi:10.​1128/​JVI.​01207-14 CrossRef PubMed PubMedCentral <br>16.Shang L, Wang Y, Qing J, Shu B, Cao L, Lou Z, Gong P, Sun Y, Yin Z (2014) An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation. Antiviral Res 112:47–58. doi:10.​1016/​j.​antiviral.​2014.​10.​009 CrossRef PubMed <br>17.Zhang Y, Zhu Z, Yang W, Ren J, Tan X, Wang Y, Mao N, Xu S, Zhu S, Cui A, Zhang Y, Yan D, Li Q, Dong X, Zhang J, Zhao Y, Wan J, Feng Z, Sun J, Wang S, Li D, Xu W (2010) An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang City of China. Virol J 7:94. doi:10.​1186/​1743-422X-7-94 CrossRef PubMed PubMedCentral <br>18.Dragovich PS, Prins TJ, Zhou R, Johnson TO, Brown EL, Maldonado FC, Fuhrman SA, Zalman LS, Patick AK, Matthews DA, Hou X, Meador JW, Ferre RA, Worland ST (2002) Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. Part 7. Structure-activity studies of bicyclic 2-pyridone-containing peptidomimetics. Bioorg Med Chem Lett 12:733–738. doi:10.​1016/​S0960-894X(02)00008-2 CrossRef PubMed <br>19.Matthews DA, Dragovich PS, Webber SE, Fuhrman SA, Patick AK, Zalman LS, Hendrickson TF, Love RA, Prins TJ, Marakovits JT, Zhou R, Tikhe J, Ford CE, Meador JW, Ferre RA, Brown EL, Binford SL, Brothers MA, DeLisle DM, Worland ST (1999) Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA 96:11000–11007. doi:10.​1073/​pnas.​96.​20.​11000 CrossRef PubMed PubMedCentral <br>20.Tijsma A, Franco D, Tucker S, Hilgenfeld R, Froeyen M, Leyssen P, Neyts J (2014) The capsid binder vapendavir and the novel protease inhibitor SG85 inhibit enterovirus 71 replication. Antimicrob Agents Chemother 58:6990–6992. doi:10.​1128/​AAC.​03328-14 CrossRef PubMed PubMedCentral <br>21.De Colibus L, Wang X, Spyrou JA, Kelly J, Ren J, Grimes J, Puerstinger G, Stonehouse N, Walter TS, Hu Z, Wang J, Li X, Peng W, Rowlands DJ, Fry EE, Rao Z, Stuart DI (2014) More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat Struct Mol Biol 21:282–288. doi:10.​1038/​nsmb.​2769 CrossRef PubMed PubMedCentral <br>22.Qing J, Wang Y, Sun Y, Huang J, Yan W, Wang J, Su D, Ni C, Li J, Rao Z, Liu L, Lou Z (2014) Cyclophilin A associates with enterovirus-71 virus capsid and plays an essential role in viral infection as an uncoating regulator. PLoS Pathog 10:e1004422. doi:10.​1371/​journal.​ppat CrossRef PubMed PubMedCentral <br>23.Rotbart HA (2002) Treatment of picornavirus infections. Antiviral Res 53:83–98CrossRef PubMed <br>24.Tsang SK, Cheh J, Isaacs L, Joseph-McCarthy D, Choi SK, Pevear DC, Whitesides GM, Hogle JM (2001) A structurally biased combinatorial approach for discovering new anti-picornaviral compounds. Chem Biol 8:33–45CrossRef PubMed <br>25.Phelps DK, Post CB (1995) A novel basis of capsid stabilization by antiviral compounds. J Mol Biol 254:544–551CrossRef PubMed <br>26.Tsang SK, Danthi P, Chow M, Hogle JM (2000) Stabilization of poliovirus by capsid-binding antiviral drugs is due to entropic effects. J Mol Biol 296:335–340CrossRef PubMed <br>27.Feil SC, Hamilton S, Krippner GY, Lin B, Luttick A, McConnell DB, Nearn R, Parker MW, Ryan J, Stanislawski PC, Tucker SP, Watson KG, Morton CJ (2012) An orally available 3-ethoxybenzisoxazole capsid binder with clinical activity against human rhinovirus. ACS Med Chem Lett 3:303–307. doi:10.​1021/​ml2002955 CrossRef PubMed PubMedCentral <br>28.Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, Wang J, Zhang C, Cao Q, Deng Y, Hu W, Yao K (2012) In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 157:669–679. doi:10.​1007/​s00705-011-1222-6 CrossRef PubMed <br>29.Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J (2011) Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 16:8475–8503. doi:10.​3390/​molecules1610847​5 CrossRef PubMed <br>30.FDA: Copegus highlights of prescribing information. http://​www.​accessdata.​fda.​gov/​drugsatfda_​docs/​label/​2011/​021511s023lbl.​pdf <br>31.Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042CrossRef PubMed <br>32.Prasad S, Phromnoi K, Yadav VR, Chaturvedi MM, Aggarwal BB (2010) Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med 76:1044–1063. doi:10.​1055/​s-0030-1250111 CrossRef PubMed <br>33.Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yáñez M, Orallo F, Ortuso F, Alcaro S, Cirilli R, Ferretti R, Sanna ML (2010) A new series of flavones, thioflavones, and flavanones as selective monoamine oxidase-B inhibitors. Bioorg Med Chem 18:1273–1279. doi:10.​1016/​j.​bmc.​2009.​12.​029 CrossRef PubMed <br>34.Savov VM, Galabov AS, Tantcheva LP, Mileva MM, Pavlova EL, Stoeva ES, Braykova AA (2006) Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection. Exp Toxicol Pathol 58:59–64CrossRef PubMed <br>35.Nishizaki Y, Ishimoto Y, Hotta Y, Hosoda A, Yoshikawa H, Akamatsu M, Tamura H (2009) Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay. Bioorg Med Chem Lett 19:4706–4710. doi:10.​1016/​j.​bmcl.​2009.​06.​073 CrossRef PubMed <br>36.Chin YW, Kong JY, Han SY (2013) Flavonoids as receptor tyrosine kinase FLT3 inhibitors. Bioorg Med Chem Lett 23:1768–1770. doi:10.​1016/​j.​bmcl.​2013.​01.​049 CrossRef PubMed <br>37.Verghese J, Nguyen T, Oppegard LM, Seivert LM, Hiasa H, Ellis KC (2013) Flavone-based analogues inspired by the natural product simocyclinone D8 as DNA gyrase inhibitors. Bioorg Med Chem Lett 23:5874–5877. doi:10.​1016/​j.​bmcl.​2013.​08.​094 CrossRef PubMed <br>38.Kumar P, Kushwaha P, Khedgikar V, Gautam J, Choudhary D, Singh D, Trivedi R, Maurya R (2014) Neoflavonoids as potential osteogenic agents from Dalbergia sissoo heartwood. Bioorg Med Chem Lett 24:2664–2668. doi:10.​1016/​j.​bmcl.​2014.​04.​056 CrossRef PubMed <br>39.Liu AL, Wang HD, Lee SM, Wang YT, Du GH (2008) Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem 16:7141–7147. doi:10.​1016/​j.​bmc.​2008.​06.​049 CrossRef PubMed <br>40.Abdal Dayem A, Choi HY, Kim YB, Cho SG (2015) Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 10:e0121610CrossRef PubMed <br>41.Wang J, Zhang T, Du J, Cui S, Yang F, Jin Q (2014) Anti-enterovirus 71 effects of chrysin and its phosphate ester. PLoS One 9(3):e89668CrossRef PubMed PubMedCentral <br>42.Senthilvel P, Lavanya P, Kumar KM, Swetha R, Anitha P, Bag S, Sarveswari S, Vijayakumar V, Ramaiah S, Anbarasu A (2013) Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation 9(18):889–895. doi:10.​6026/​97320630009889 CrossRef PubMed PubMedCentral <br>43.Galochkina AV, Zarubaev VV, Kiselev OI, Babkin VA, Ostrouhova LA (2015) Study of anti-viral activity of dihydroquercetin in the course of replication of Coxsackievirus B4 in vitro. Voprosy virusologii (in press) <br>44.Zenkevich IG, Eshenko AY, Makarov VG, Kolesnik YA, Shmatkov DA, Tikhonov VP (2006) Optical pure isomers of dihydroquercetin. Composition of Bioflavonoid Complex of Larix: Stereoisomerism of Dihydroquercetin. The X international congress PHYTOPHARM. Actual problems of creation of new medical preparations of natural origin, St. Petersburg 93–109<br>45.Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRef PubMed <br>46.Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30CrossRef <br>47.de Moura CF, Noguti J, de Jesus GP, Ribeiro FA, Garcia FA, Gollucke AP, Aguiar O Jr, Ribeiro DA (2013) Polyphenols as a chemopreventive agent in oral carcinogenesis: putative mechanisms of action using in-vitro and in-vivo test systems. Eur J Cancer Prev 22:467–472. doi:10.​1097/​CEJ.​0b013e32835b6a94​ CrossRef PubMed <br>48.Giovannini C, Masella R (2012) Role of polyphenols in cell death control. Nutr Neurosci 15:134–149. doi:10.​1179/​1476830512Y.​0000000006 CrossRef PubMed <br>49.Wang HQ, Meng S, Li ZR, Peng ZG, Han YX, Guo SS, Cui XL, Li YH, Jiang JD (2013) The antiviral effect of 7-hydroxyisoflavone against Enterovirus 71 in vitro. J Asian Nat Prod Res 15:382–389. doi:10.​1080/​10286020.​2013.​770737 CrossRef PubMed <br>50.Panchal RG, Reid SP, Tran JP, Bergeron AA, Wells J, Kota KP, Aman J, Bavari S (2012) Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 93:23–29. doi:10.​1016/​j.​antiviral.​2011.​10.​011 CrossRef PubMed <br>51.Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. doi:10.​1038/​nri3423 CrossRef PubMed PubMedCentral <br>52.Vasallo C, Gastaminza P (2015) Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 209:100–117. doi:10.​1016/​j.​virusres.​2015.​03.​013 CrossRef PubMed <br>53.Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD–implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 9:1207–1224. doi:10.​2147/​COPD.​S5122 CrossRef PubMed PubMedCentral <br>54.Reshi ML, Su YC, Hong JR (2014) RNA viruses: ROS-mediated cell death. Int J Cell Biol. doi:10.​1155/​2014/​467452 PubMed PubMedCentral <br>55.Garofalo RP, Kolli D, Casola A (2013) Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. Antioxid Redox Signal 18:186–217. doi:10.​1089/​ars.​2011.​4307 CrossRef PubMed PubMedCentral <br>56.Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127(5 Suppl):962S–965SPubMed <br>57.Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21:641–649CrossRef PubMed <br>58.Rakers C, Schwerdtfeger SM, Mortier J, Duwe S, Wolff T, Wolber G, Melzig MF (2014) Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase. Bioorg Med Chem Lett 24:4312–4317. doi:10.​1016/​j.​bmcl.​2014.​07.​010 CrossRef PubMed <br>59.Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J Jr (2013) Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antiviral Res 97:41–48. doi:10.​1016/​j.​antiviral.​2012.​10.​004 CrossRef PubMed <br>60.Ho HY, Cheng ML, Weng SF, Chang L, Yeh TT, Shih SR, Chiu DT (2008) Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection. J Gen Virol 89:2080–2089. doi:10.​1099/​vir.​0.​2008/​001404-0 CrossRef PubMed <br>61.Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DT (2009) Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 57:6140–6147. doi:10.​1021/​jf901128u CrossRef PubMed <br>62.Kalebic T, Kinter A, Poli G, Anderson ME, Meister A, Fauci AS (1991) Suppression of human immunodeficiency virus expression in chronically infected monocytic cells by glutathione, glutathione ester, and N-acetylcysteine. Proc Natl Acad Sci USA 88:986–990CrossRef PubMed PubMedCentral <br>63.Ghezzi P, Ungheri D (2004) Synergistic combination of N-acetylcysteine and ribavirin to protect from lethal influenza viral infection in a mouse model. Int J Immunopathol Pharmacol 17:99–102PubMed <br>64.Garozzo A, Tempera G, Ungheri D, Timpanaro R, Castro A (2007) N-acetylcysteine synergizes with oseltamivir in protecting mice from lethal influenza infection. Int J Immunopathol Pharmacol 20:349–354PubMed <br>65.Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79:8014–8023CrossRef PubMed PubMedCentral <br>66.Tsai K, Wang SS, Chen TS, Kong CW, Chang FY, Lee SD, Lu FJ (1998) Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut 42:850–855CrossRef PubMed PubMedCentral <br>67.Schulz HU, Niederau C, Klonowski-Stumpe H, Halangk W, Luthen R, Lippert H (1999) Oxidative stress in acute pancreatitis. Hepatogastroenterology 46:2736–2750PubMed <br>68.Telek G, Ducro R, Scoazec JY, Pasquier C, Feldmann G, Roze C (2001) Differential upregulation of cellular adhesion molecules at the sites of oxidative stress in experimental acute pancreatitis. J Surg Res 96:56–67CrossRef PubMed <br>69.Telek G, Regoly-Merei J, Kovacs GC, Simon L, Nagy Z, Hamar J, Jakab F (2001) The first histological demonstration of pancreatic oxidative stress in human acute pancreatitis. Hepatogastroenterology 48:1252–1258PubMed <br>70.Sanfey H, Bulkley GB, Cameron JL (1984) The role of oxygen-derived free radicals in the pathogenesis of acute pancreatitis. Ann Surg 200:405–413CrossRef PubMed PubMedCentral <br>71.Guice KS, Miller DE, Oldham KT, Townsend CM Jr, Thompson JC (1986) Superoxide dismutase and catalase: a possible role in established pancreatitis. Am J Surg 151:163–169CrossRef PubMed <br>72.Schoenberg MH, Buchler M, Beger HG (1992) The role of oxygen radicals in experimental acute pancreatitis. Free Radic Biol Med 12:515–522CrossRef PubMed <br>73.Sweiry JH, Mann GE (1996) Role of oxidative stress in the pathogenesis of acute pancreatitis. Scand J Gastroenterol Suppl 219:10–15CrossRef PubMed <br>74.Rau B, Bauer A, Wang A, Gansauge F, Weidenbach H, Nevalainen T, Poch B, Beger HG, Nussler AK (2001) Modulation of endogenous nitric oxide synthase in experimental acute pancreatitis: role of anti-ICAM-1 and oxygen free radical scavengers. Ann Surg 233:195–203CrossRef PubMed PubMedCentral <br>75.Lee JH, An CS, Yun BS, Kang KS, Lee YA, Won SM, Gwag BJ, Cho SI, Hahm KB (2012) Prevention effects of ND-07, a novel drug candidate with a potent antioxidative action and anti-inflammatory action, in animal models of severe acute pancreatitis. Eur J Pharmacol 687:28–38. doi:10.​1016/​j.​ejphar.​2012.​04.​048 CrossRef PubMed <br>76.Robertson RP, Harmon JS (2007) Pancreatic islet beta-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 581:3743–3748CrossRef PubMed PubMedCentral <br>
  • 作者单位:Anastasia V. Galochkina (1) <br> Vadim B. Anikin (1) <br> Vasily A. Babkin (2) <br> Liudmila A. Ostrouhova (2) <br> Vladimir V. Zarubaev (1) <br><br>1. Influenza Research Institute, St. Petersburg, Russia <br> 2. Irkutsk Institute of Chemistry, Irkutsk, Russia <br>
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine<br>Virology<br>Medical Microbiology<br>Infectious Diseases<br>
  • 出版者:Springer Wien
  • ISSN:1432-8798
文摘
Members of the family Picornaviridae, in particular, enteroviruses, represent a serious threat to human health. They are responsible for numerous pathologies ranging from mild disease to fatal outcome. Due to the limited number of safe and effective antivirals against enteroviruses, there is a need for search and development of novel drugs with various mechanisms of activity against enteroviruses-induced pathologies. We studied the effect of dihydroquercetin (DHQ), a flavonoid from larch wood, on the course of pancreatitis of white mice caused by coxsackievirus B4 (CVB4). DHQ was applied intraperitoneally at doses of 75 or 150 mg/kg/day once a day for 5 days postinfection (p.i.) starting on day 1 p.i., and its effect was compared to that of the reference compound ribavirin. The application of DHQ resulted in a dose-dependent decrease in the virus titer in pancreatic tissue, reaching, at the highest dose, 2.4 logs on day 5 p.i. Also, the application of DHQ led to restoration of antioxidant activity of pancreatic tissue that was impaired in the course of pancreatitis. Morphologically, pancreatic tissue of DHQ-treated animals demonstrated less infiltration with inflammatory cells and no signs of tissue destruction compared to placebo-treated mice. Both ribavirin- and DHQ-treated animals developed fewer foci of pancreatic inflammation per mouse, and these foci contained fewer infiltrating cells than those in placebo-treated mice. The effect of DHQ was comparable to or exceeded that of ribavirin. Taken together, our results suggest high antiviral activity of DHQ and its promising potential in complex treatment of viral pancreatitis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700