Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate
详细信息    查看全文
  • 作者:M. Toufiq Reza ; Jan Mumme ; Andreas Ebert
  • 关键词:Digestate ; Hydrothermal carbonization ; Hydrochar ; Power law correlation ; Solid ; state NMR
  • 刊名:Biomass Conversion and Biorefinery
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:5
  • 期:4
  • 页码:425-435
  • 全文大小:866 KB
  • 参考文献:1.Hendriks ATWM, Zeemann G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10-8CrossRef
    2.Funke A, Mumme J, Diakite M (2013) Cascaded production of biogas and hydrochar from wheat straw: energetic potential and recovery of carbon and plant nutrients. Biomass Bioenergy 58:229-37CrossRef
    3.Nkoa A (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473-92CrossRef
    4.Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45:5696-703CrossRef
    5.Goto M, Obuchi R, Hirose T, Sasaki T, Shibata M (2004) Hydrothermal conversion of municipal organic waste into resources. Bioresour Technol 93:279-84CrossRef
    6.Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102:9255-260CrossRef
    7.Reza MT, Werner M, Pohl M, Mumme J (2014) Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production. J Vis Exp 88:1-
    8.Reza MT, Borrego A, Wirth B (2014) Optical texture of hydrochar from maize silage and maize silage digestate, Int. J Coal Geol 134-35:74-9CrossRef
    9.Dicke C, Lanza G, Mumme J, Ellerbrock R, Kern J (2014) Effect of HTC-char application on trace gas emissions from two sandy soil horizons. J Environ Qual 43:1790-798CrossRef
    10.Reza MT, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ (2014) Hydrothermal carbonization: reaction chemistry and water balance. Biomass Conv Bioref 4:311-21CrossRef
    11.Reza MT, Becker W, Sachsenheimer K, Mumme J (2014) Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage. Bioresour Technol 161:91-01CrossRef
    12.Reza MT, Lynam JG, Vasquez VR, Coronella CJ (2014) Engineered pellets from hydrothermally carbonized and torrefied biochar blend. Biomass Bioenergy 63:229-38CrossRef
    13.Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG et al (2014) Hydrothermal carbonization of biomass for energy and crop production. App Bioenerg 1:11-8
    14.Reza MT, Wirth B, Lüder W, Werner M (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352-61CrossRef
    15.Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281-289CrossRef
    16.Calucci L, Rasse DP, Forte C (2012) Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and miscanthus. Energ Fuel 27:303-09CrossRef
    17.Cao X, Ro K, Chappell M, Li Y, Mao J (2011) Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Energ Fuel 25:388-97CrossRef
    18.Pohl M, Mumme J, Heeg K, Nettmann E (2012) Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol 124:321-27CrossRef
    19.Boie W (1953) Fuel technology calculations. Energietechnik 3:309-16
    20.Grénman H, Er?nen K, Krogell J, Willf?r S, Salmi T, Murzin DY (2011) The kinetics of aqueous extraction of hemicelluloses from spruce in an intensified reactor system. Ind Eng Chem Res 50:3818-828CrossRef
    21.Reza MT, Uddin MH, Lynam JG, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86-4CrossRef
    22.Reza MT, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ, Vasquez VR (2013) Reaction kinetics and particle size effect on hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161-69CrossRef
    23.Oliveira I, Bl?hse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:138-46CrossRef
    24.Becker R, Dorgerloch U, Helmis M, Mumme J, Diakité M, Nehls I (2013) Hydrothermally carbonized plant material: patterns of volatile organic compounds detected by gas chromatography. Bioresour Technol 130:621-28CrossRef
    25.Peterson AA, Vogel F, Lachance RP, Fr?ling M, Antal MJ (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32-5CrossRef
    26.Lu X, Pellechia PJ, Flora JRV, Berge ND (2013) Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour Technol 138:180-90CrossRef
    27.Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermal carbonization: 2. Kinetics of draff conversion. Chem Ing Tech 84:509-12CrossRef
    28.Ruyter HP (1982) Coalification model. Fuel 61:1182-187CrossRef
    29.Zhan
  • 作者单位:M. Toufiq Reza (1) (2)
    Jan Mumme (1) (3)
    Andreas Ebert (4)

    1. Leibniz Institute for Agricultural Engineering Potsdam-Bornim e.V., Max-Eyth-Allee 100, 14469, Potsdam, Germany
    2. Department of Chemical and Materials Engineering, University of Nevada Reno, 1664 N. Virginia Street, Reno, 89557, NV, USA
    3. UK Biochar Center, University of Edinburgh, Edinburgh, EH9 3JN, UK
    4. Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, 14476, Potsdam-Golm, Germany
  • 刊物类别:Engineering
  • 刊物主题:Biotechnology
    Renewable and Green Energy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2190-6823
文摘
Hydrothermal carbonization (HTC) of wheat straw digestate was performed at 180-60 °C for 2- h. The resulted hydrochars were analyzed by ultimate analyzer. Elemental carbon and oxygen concentration of hydrochars were fitted with power law correlation. Moreover, chemical structures of feedstocks and hydrochars were investigated by 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. In particular, a procedure including CP dynamics analysis was applied to obtain semi-quantitative information on the composition of the analyzed materials from 13C CP/MAS spectra. Up to a process temperature of 220 °C, digestate-derived hydrochar contained primarily crystalline cellulose and lignin. At 260 °C, crystalline cellulose was degraded and more aliphatic carbon and lignin-rich hydrochars were produced. Ester bands corresponding to hemicellulose disappeared at mild HTC conditions at 180 °C and 2 h. Keywords Digestate Hydrothermal carbonization Hydrochar Power law correlation Solid-state NMR

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700