Organic matter decomposition: bridging the gap between Rock–Eval pyrolysis and chemical characterization (CPMAS 13C NMR)
详细信息    查看全文
  • 作者:R. Albrecht (1) (2) (3)
    D. Sebag (4) (5)
    E. Verrecchia (1)
  • 关键词:Organic matter ; Compost ; Soils ; Rock–Eval pyrolysis ; 13C Nuclear magnetic resonance spectroscopy
  • 刊名:Biogeochemistry
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:122
  • 期:1
  • 页码:101-111
  • 全文大小:430 KB
  • 参考文献:1. Albrecht R, Joffre R, Gros R, Le Petit J, Terrom G, Perissol C (2008a) Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process. Bioresour Technol 99(2):448-55 CrossRef
    2. Albrecht R, Ziarelli F, Alarcon-Gutierrez E, Le Petit J, Terrom G, Perissol C (2008b) (13)C solid-state NMR assessment of decomposition pattern during co-composting of sewage sludge and green wastes. Eur J Soil Sci 59(3):445-52 CrossRef
    3. Albrecht R, Joffre R, Le Petit J, Terrom G, Perissol C (2009) Calibration of Chemical and Biological Changes in Cocomposting of Biowastes Using Near-Infrared Spectroscopy. Environ Sci Technol 43(3):804-11 CrossRef
    4. Albrecht R, Perissol C, Ruaudel F, Le Petit J, Terrom G (2010) Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manag 30(5):764-70 CrossRef
    5. Carrie J, Sanei H, Stern G (2012) Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38-3 CrossRef
    6. Copard Y, Di-Giovanni C, Martaud T, Albéric P, Olivier J-E (2006) Using Rock-Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: implications for the roles of erosion and weathering. Earth Surf Proc Land 31(2):135-53 CrossRef
    7. De Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1(2):157-76 CrossRef
    8. Disnar JR (1994) Determination of maximum paleotemperatures of burial (MPTB) of sedimentary rocks from pyrolysis data on the associated organic matter: basic principles and practical application. Chem Geol 118(1-):289-99 CrossRef
    9. Disnar JR, Guillet B, Keravis D, Di-Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34(3):327-43 CrossRef
    10. Epstein E (1997) The science of composting. Technomic Publishing Company, Pennsylvania
    11. Espitalie J, Deroo G, Marquis F (1985a) La pyrolyse Rock-Eval et ses applications. Première partie. Oil Gas Sci Technol 40(5):563-79 CrossRef
    12. Espitalie J, Deroo G, Marquis F (1985b) La pyrolyse Rock-Eval et ses applications. Deuxième partie. Oil Gas Sci Technol 40(6):755-84 CrossRef
    13. Gillespie AW, Sanei H, Diochon A et al (2014) Perennially and annually frozen soil carbon differ in their susceptibility to decomposition: analysis of Subarctic earth hummocks by bioassay, XANES and pyrolysis. Soil Biol Biochem 68:106-16 CrossRef
    14. Graz Y, Di-Giovanni C, Copard Y, Elie M, Faure P, Defarge FL, Leveque J, Michels R, Olivier JE (2011) Occurrence of fossil organic matter in modern environments: optical, geochemical and isotopic evidence. Appl Geochem 26(8):1302-314 CrossRef
    15. Hare AA, Kuzyk ZZA, Macdonald RW et al (2014) Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. Org Geochem 68:52-0 CrossRef
    16. Hetényi M, Nyilas T, Sajgó C (2010) Organic geochemical evidence of late Pleistocene-Holocene environmental changes in the Lake Balaton region (Hungary). Org Geochem 41(9):915-23
文摘
Organic matter (OM) is a key component of soils but information on its chemistry and behavior in soils is still incomplete. Numerous methods are commonly used to characterize and monitor OM dynamics, but only a few include the qualities required to become routine techniques i.e. simple, rapid, accurate and at low cost. Rock–Eval pyrolysis (RE pyrolysis) is a good candidate, as it provides an overview of OM properties by monitoring four components related to the main major classes of organic constituents (from A1 for the labile biological constituents to A4 for the mature refractory fraction). However, a question is still pending: do these four major classes used in the literature reflect a pertinent compositional chemical counterpart? 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) has been used to answer this question by collecting information on structural and conformational characteristics of OM. Moreover, in order to avoid the blurring effect of pedogenesis on OM dynamics, a “less complex OM-source, i.e. compost samples, has been used. Results showed significant and high determination coefficients between classes, indices (of transformation of plant biopolymers, humification- from RE pyrolysis, and the main classes of OM characterized by 13C NMR, e.g. A1 & A2 with labile/easily degradable components (alkyl C et O-alkyl C), A3 & A4 with humified OM (with aromatic C and phenolic C). The R index (contribution of bio-macromolecules) is correlated with phenolic and aromatic C, whereas the I index (related to immature OM) refers to labile––easily degradable components (alkyl C et O-alkyl C). The results confirm the pertinence of RE pyrolysis to monitor OM dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700