Microstructure and stray electric fields at surface cracks in ferroelectrics
详细信息    查看全文
  • 作者:Lun Yang (1) luny@andrew.cmu.edu
    Kaushik Dayal (1) kaushik@cmu.edu
  • 关键词:Ferroelectrics &#8211 ; Cracks &#8211 ; Phase ; field simulation &#8211 ; Boundary element method &#8211 ; Domain patterns
  • 刊名:International Journal of Fracture
  • 出版年:2012
  • 出版时间:March 2012
  • 年:2012
  • 卷:174
  • 期:1
  • 页码:17-27
  • 全文大小:1.8 MB
  • 参考文献:1. Abdollahi A, Arias I (2011) Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater 59(12): 4733–4746
    2. Dayal K, Bhattacharya K (2007a) A real-space non-local phase-field model of ferroelectric domain patterns in complex geometries. Acta Mater 55(6): 1907–1917
    3. Dayal K, Bhattacharya K (2007b) Active tuning of photonic device characteristics during operation by ferroelectric domain switching. J Appl Phys 102: 064102
    4. El-Naggar MY, Dayal K, Goodwin DG, Bhattacharya K (2006) Graded ferroelectric capacitors with robust temperature characteristics. J Appl Phys 100: 114115
    5. Fang D, Jiang Y, Li S, Sun CT (2007) Interactions between domain switching and crack propagation in poled batio3 single crystal under mechanical loading. Acta Mater 55(17): 5758–5767
    6. Jiang Y, Zhang Y, Liu B, Fang D (2009) Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater 57(5): 1630–1638
    7. Landis CM (2003) On the fracture toughness of ferroelastic materials. J Mech Phys Solids 51(8): 1347–1369
    8. Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41: 6291–6315
    9. Li LJ, Yang Y, Shu YC, Li JY (2010) Continuum theory and phase-field simulation of magnetoelectric effects in multiferroic bismuth ferrite. J Mech Phys Solids 58(10): 1613–1627
    10. Li LJ, Lei CH, Shu YC, Li JY (2011) Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Mater 59(7): 2648–2655
    11. Li W, Landis CM (2011) Nucleation and growth of domains near crack tips in single crystal ferroelectrics. Eng Fract Mech 78(7): 1505–1513
    12. Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field1. Acta Mater 46(2): 599–608
    13. Schneider GA (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu Rev Mater Res 37(1): 491
    14. Schneider GA, Felten F, McMeeking RM (2003) The electrical potential difference across cracks in pzt measured by kelvin probe microscopy and the implications for fracture. Acta Mater 51(8): 2235–2241
    15. Scott JF (2000) Ferroelectric memories. Springer, New York
    16. Shu YC, Bhattacharya K (2001) Domain patterns and macroscopic behaviour of ferroelectric materials. Philos Mag Part B 81(12): 2021–2054
    17. Sun X, Su YJ, Gao KW, Guo LQ, Qiao LJ, Chu WY, Zhang TY (2011) Surface potential distribution in an indentation-pre-cracked batio3 single crystal. J Am Ceram Soc 94(12): 4299–4304
    18. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric materials for microwave tunable applications. J Electroceram 11: 5–66
    19. Uchino K (1996) Piezoelectric actuators and ultrasonic motors. Kluwer, Dordrecht
    20. Wang J, Landis CM (2004) On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front. Acta Mater 52(12): 3435–3446
    21. Wang J, Zhang TY (2007) Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater 55(7): 2465–2477
    22. Westram I, Oates WS, Lupascu DC, Rodel J, Lynch CS (2007) Mechanism of electric fatigue crack growth in lead zirconate titanate. Acta Mater 55(1): 301–312
    23. Xu BX, Schrade D, Gross D, Mueller R (2011) Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int J Fract 166(1): 163–172
    24. Xu BX, Schrade D, Gross D, Mueller R (2010) Phase field simulation of domain structures in cracked ferroelectrics. Int J Fract 165(2): 163–173
    25. Xu Y (1991) Ferroelectric materials and their applications. North-Holland
    26. Yang L, Dayal K (2010) Formulation of phase-field energies for microstructure in complex crystal structures. Appl Phys Lett 96: 081916
    27. Yang L, Dayal K (2011a) A completely iterative method for the infinite domain electrostatic problem with nonlinear dielectric media. J Comput Phys 230(21): 7821–7829
    28. Yang L, Dayal K (2011b) Effect of lattice orientation, surface modulation, and applied fields on free-surface domain microstructure in ferroelectrics. Acta Mater 59(17): 6594–6603
    29. Zhang W, Bhattacharya K (2005) A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater 53(1): 185–198
  • 作者单位:1. Carnegie Mellon University, Pittsburgh, PA, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-2673
文摘
Ferroelectric perovskites are widely used in transducer, memory and optical applications due to their attractive electromechanical and optical properties. In these brittle materials, reliability and failure of devices is dominated by the behavior of cracks. The electromechanical coupling causes cracks to interact strongly with both mechanical as well as electrical fields. Additionally, cracks and domain patterns interact strongly with each other. Hence, an understanding of the electromechanics of cracks requires an accounting of all these interactions. In this work, we apply a real-space phase-field method to compute the stresses, domain patterns, and stray electric fields in the vicinity of a stationary crack, defined here as a geometric feature that causes large but bounded stress. We investigate the effects of charge compensation on the crack face, crack orientation with respect to the crystal lattice, and applied far-field stress and electric fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700