The angiogenic variation of skeletal site-specific human BMSCs from same alveolar cleft patients: a comparative study
详细信息    查看全文
  • 作者:Yifei Du ; Fei Jiang ; Yi Liang ; Yuli Wang ; Weina Zhou…
  • 关键词:Alveolar cleft graft ; Angiogenesis ; Human bone marrow mesenchymal stem cells (hBMSCs) ; Site ; specific characteristic ; Co ; culture ; Basic fibroblast growth factor (bFGF)
  • 刊名:Journal of Molecular Histology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:47
  • 期:2
  • 页码:153-168
  • 全文大小:3,325 KB
  • 参考文献:Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S (2010) Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 89(11):1293–1298. doi:10.​1177/​0022034510378427​ CrossRef PubMed PubMedCentral
    Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG (2006) Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38(6):758–768. doi:10.​1016/​j.​bone.​2005.​10.​027 CrossRef PubMed
    Akintoye SO, Giavis P, Stefanik D, Levin L, Mante FK (2008) Comparative osteogenesis of maxilla and iliac crest human bone marrow stromal cells attached to oxidized titanium: a pilot study. Clin Oral Implants Res 19(11):1197–1201. doi:10.​1111/​j.​1600-0501.​2008.​01592.​x CrossRef PubMed PubMedCentral
    Alard JE, Dueymes M, Mageed RA, Saraux A, Youinou P, Jamin C (2009) Mitochondrial heat shock protein (HSP) 70 synergizes with HSP60 in transducing endothelial cell apoptosis induced by anti-HSP60 autoantibody. FASEB J 23(8):2772–2779. doi:10.​1096/​fj.​08-128785 CrossRef PubMed
    Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301:124–131PubMed
    Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558. doi:10.​1182/​blood-2007-10-118273 CrossRef PubMed PubMedCentral
    Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11(5):365–373PubMed
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.​1038/​nature10144 CrossRef PubMed PubMedCentral
    Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679PubMed
    Chaichanasakul T, Kang B, Bezouglaia O, Aghaloo TL, Tetradis S (2014) Diverse osteoclastogenesis of bone marrow from mandible versus long bone. J Periodontol 85(6):829–836. doi:10.​1902/​jop.​2013.​130376 CrossRef PubMed PubMedCentral
    Chim SM, Qin A, Tickner J, Pavlos N, Davey T, Wang H, Guo Y, Zeng MH, Xu J (2011) EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J Biol Chem 286(25):22035–22046. doi:10.​1074/​jbc.​M110.​187633 CrossRef PubMed PubMedCentral
    Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36(5):642–654. doi:10.​1016/​j.​exphem.​2007.​12.​015 CrossRef PubMed
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. doi:10.​1016/​j.​stem.​2008.​07.​003 CrossRef PubMed
    Dai L, Zhu J, Mao M, Li Y, Deng Y, Wang Y, Liang J, Tang L, Wang H, Kilfoy BA, Zheng T (2010) Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network. Birth Defects Res A Clin Mol Teratol 88(1):41–47. doi:10.​1002/​bdra.​20607 PubMed PubMedCentral
    Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165. doi:10.​1016/​B978-0-12-386041-5.​00003-0 CrossRef PubMed PubMedCentral
    Deshpande SS, Gallagher KK, Donneys A, Tchanque-Fossuo CN, Sarhaddi D, Sun H, Krebsbach PH, Buchman SR (2013) Stem cell therapy remediates reconstruction of the craniofacial skeleton after radiation therapy. Stem Cells Dev 22(11):1625–1632. doi:10.​1089/​scd.​2012.​0472 CrossRef PubMed PubMedCentral
    Dilling CF, Wada AM, Lazard ZW, Salisbury EA, Gannon FH, Vadakkan TJ, Gao L, Hirschi K, Dickinson ME, Davis AR, Olmsted-Davis EA (2010) Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification. J Bone Miner Res 25(5):1147–1156. doi:10.​1359/​jbmr.​091031 PubMed PubMedCentral
    Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12(3):167–178. doi:10.​1038/​nrg2933 CrossRef PubMed PubMedCentral
    Dong W, Ge J, Zhang P, Fu Y, Zhang Z, Cheng J, Jiang H (2014) Phenotypic characterization of craniofacial bone marrow stromal cells: unique properties of enhanced osteogenesis, cell recruitment, autophagy, and apoptosis resistance. Cell Tissue Res 358(1):165–175. doi:10.​1007/​s00441-014-1927-4 CrossRef PubMed
    Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, Jiang H (2015) Roles of SATB2 in site-specific stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol 230(3):680–690. doi:10.​1002/​jcp.​24792 CrossRef PubMed
    Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888. doi:10.​1089/​ten.​2006.​12.​2875 CrossRef PubMed
    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi:10.​1161/​circresaha.​108.​176826 CrossRef PubMed PubMedCentral
    Grainger SJ, Carrion B, Ceccarelli J, Putnam AJ (2013) Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co-delivery of endothelial cells and stromal cells. Tissue Eng Part A 19(9–10):1209–1222. doi:10.​1089/​ten.​TEA.​2012.​0281 CrossRef PubMed PubMedCentral
    Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY, Dilley RJ (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21(12):2189–2203. doi:10.​1089/​scd.​2011.​0674 CrossRef PubMed PubMedCentral
    Janssen NG, Weijs WL, Koole R, Rosenberg AJ, Meijer GJ (2014) Tissue engineering strategies for alveolar cleft reconstruction: a systematic review of the literature. Clin Oral Investig 18(1):219–226. doi:10.​1007/​s00784-013-0947-x CrossRef PubMed
    Jiang F, Ma J, Liang Y, Niu Y, Chen N, Shen M (2015) Amniotic mesenchymal stem cells can enhance angiogenic capacity via MMPs in vitro and in vivo. Biomed Res Int 2015:324014. doi:10.​1155/​2015/​324014 PubMed PubMedCentral
    Kachgal S, Putnam AJ (2011) Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis 14(1):47–59. doi:10.​1007/​s10456-010-9194-9 CrossRef PubMed PubMedCentral
    Kaigler D, Pagni G, Park C-H, Tarle SA, Bartel RL, Giannobile WV (2010) Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration. Tissue Eng Part A 16(9):2809–2820. doi:10.​1089/​ten.​tea.​2010.​0079 CrossRef PubMed PubMedCentral
    Koole R (1994) Ectomesenchymal mandibular symphysis bone graft: an improvement in alveolar cleft grafting? Cleft Palate Craniofac J 31(3):217–223. doi:10.​1597/​1545-1569(1994)031<0217:​EMSBGA>2.​3.​CO;2 CrossRef PubMed
    Koole R, Bosker H, van der Dussen FN (1989) Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Craniomaxillofac Surg 17(Suppl 1):28–30CrossRef PubMed
    Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135(17):2845–2854. doi:10.​1242/​dev.​023788 CrossRef PubMed
    Li Q, Wang Z (2013) Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study. Arch Med Res 44(7):504–513. doi:10.​1016/​j.​arcmed.​2013.​09.​009 CrossRef PubMed
    Lin CS, Lue TF (2013) Defining vascular stem cells. Stem Cells Dev 22(7):1018–1026. doi:10.​1089/​scd.​2012.​0504 CrossRef PubMed PubMedCentral
    Lin RZ, Moreno-Luna R, Zhou B, Pu WT, Melero-Martin JM (2012) Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells. Angiogenesis 15(3):443–455. doi:10.​1007/​s10456-012-9272-2 CrossRef PubMed PubMedCentral
    Ma J, Yang F, Both SK, Prins HJ, Helder MN, Pan J, Cui FZ, Jansen JA, van den Beucken JJ (2014) In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures. Biofabrication 6(1):015005. doi:10.​1088/​1758-5082/​6/​1/​015005 CrossRef PubMed
    Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12(2):113–123. doi:10.​1007/​s10456-009-9129-5 CrossRef PubMed
    Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Kato Y (2004) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 20(3):399–409. doi:10.​1359/​jbmr.​041117 CrossRef PubMed
    Matsubara H, Hogan DE, Morgan EF, Mortlock DP, Einhorn TA, Gerstenfeld LC (2012) Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51(1):168–180. doi:10.​1016/​j.​bone.​2012.​02.​017 CrossRef PubMed PubMedCentral
    Mikoya T, Inoue N, Matsuzawa Y, Totsuka Y, Kajii TS, Hirosawa T (2010) Monocortical mandibular bone grafting for reconstruction of alveolar cleft. Cleft Palate Craniofac J 47(5):454–468. doi:10.​1597/​09-172 CrossRef PubMed
    Osyczka AM, Damek-Poprawa M, Wojtowicz A, Akintoye SO (2009) Age and skeletal sites affect BMP-2 responsiveness of human bone marrow stromal cells. Connect Tissue Res 50(4):270–277. doi:10.​1080/​0300820090284626​2 CrossRef PubMed PubMedCentral
    Picchi J, Trombi L, Spugnesi L, Barachini S, Maroni G, Brodano GB, Boriani S, Valtieri M, Petrini M, Magli MC (2013) HOX and TALE signatures specify human stromal stem cell populations from different sources. J Cell Physiol 228(4):879–889. doi:10.​1002/​jcp.​24239 CrossRef PubMed
    Roubelakis MG, Tsaknakis G, Pappa KI, Anagnou NP, Watt SM (2013) Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE 8(1):e54747. doi:10.​1371/​journal.​pone.​0054747 CrossRef PubMed PubMedCentral
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336. doi:10.​1016/​j.​cell.​2007.​08.​025 CrossRef PubMed
    Schaaf H, Lendeckel S, Howaldt HP, Streckbein P (2010) Donor site morbidity after bone harvesting from the anterior iliac crest. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(1):52–58. doi:10.​1016/​j.​tripleo.​2009.​08.​023 CrossRef PubMed
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673CrossRef PubMed PubMedCentral
    Sindet-Pedersen S, Enemark H (1990) Reconstruction of alveolar clefts with mandibular or iliac crest bone grafts: a comparative study. J Oral Maxillofac Surg 48(6):554–558 (discussion 559–560) CrossRef PubMed
    Smith AO, Bowers SL, Stratman AN, Davis GE (2013) Hematopoietic stem cell cytokines and fibroblast growth factor-2 stimulate human endothelial cell-pericyte tube co-assembly in 3D fibrin matrices under serum-free defined conditions. PLoS ONE 8(12):e85147. doi:10.​1371/​journal.​pone.​0085147 CrossRef PubMed PubMedCentral
    Stefanik D, Sarin J, Lam T, Levin L, Leboy PS, Akintoye SO (2008) Disparate osteogenic response of mandible and iliac crest bone marrow stromal cells to pamidronate. Oral Dis 14(5):465–471CrossRef PubMed PubMedCentral
    Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99(15):9656–9661. doi:10.​1073/​pnas.​152324099 CrossRef PubMed PubMedCentral
    Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19(6):268–275. doi:10.​1016/​j.​tcb.​2009.​03.​007 CrossRef PubMed PubMedCentral
    Watt SM, Athanassopoulos A, Harris AL, Tsaknakis G (2010) Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface 7(Suppl 6):S731–S751. doi:10.​1098/​rsif.​2010.​0377.​focus CrossRef PubMed PubMedCentral
    Watt SM, Gullo F, van der Garde M, Markeson D, Camicia R, Khoo CP, Zwaginga JJ (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108:25–53. doi:10.​1093/​bmb/​ldt031 CrossRef PubMed PubMedCentral
    Zhang P, Men J, Fu Y, Shan T, Ye J, Wu Y, Tao Z, Liu L, Jiang H (2012) Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Cell Tissue Res 350(3):425–437. doi:10.​1007/​s00441-012-1487-4 CrossRef PubMed
  • 作者单位:Yifei Du (1) (2)
    Fei Jiang (1) (2)
    Yi Liang (1) (2)
    Yuli Wang (1) (2)
    Weina Zhou (1) (3)
    Yongchu Pan (1) (4)
    Mingfei Xue (1) (2)
    Yan Peng (1) (2)
    Huan Yuan (1) (2)
    Ning Chen (1) (2)
    Hongbing Jiang (1) (2)

    1. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Number 136, Hanzhong Road, Nanjing, 210029, People’s Republic of China
    2. Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
    3. Department of Polyclinic Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
    4. Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, People’s Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Developmental Biology
  • 出版者:Springer Netherlands
  • ISSN:1567-2387
文摘
Tissue engineering strategies hold great potential for alveolar cleft reconstruction. Bone marrow stromal cells (BMSCs) from iliac crest and craniofacial regions are candidate seeding cells with site-specific characteristics and bone-repairing properties. Craniofacial BMSCs seem to possess stronger multipotency and osteogenic capabilities than BMSCs isolated from iliac crest. However, the angiogenic capabilities of these two type cell is rarely reported. We obtained human BMSCs (hBMSCs) of maxilla (M-hBMSCs) and iliac crest (I-hBMSCs) from same alveolar cleft patients to investigate the agiogenic variations using co-culture system with human umbilical vein endothelial cells (HUVECs). From in vitro comparison, M-hBMSCs allowed HUVECs to form more tube-like structures and sprouting angiogenesis by tube formation assays and 3D fibrin vasculogenic assay, respectively. By transplantation in vivo, M-hBMSCs enhanced larger size vessel like structures distributed the entire implants compared with I-hBMSCs. Western blotting was used to assess the angiogenesis related factors including hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The results showed a significant higher expression of bFGF protein in M-hBMSCs and HUVECs co-culture system both in vitro and in vivo. As bFGF could promote migration and proliferation of endothelial cells, scratch wound healing and transwell migration assays were performed as well as MTT assays and cell cycle analysis. The data suggested the effect of M-hBMSCs on HUVECs was stronger than I-hBMSCs. Taken together, these results indicated that craniofacial BMSCs seemed to have greater angiogenesis capability than iliac crest BMSCs and this might be associated with the different levels of bFGF protein expression in co-culture system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700