Novel angiogenin mutants with increased cytotoxicity enhance the depletion of pro-inflammatory macrophages and leukemia cells ex vivo
详细信息    查看全文
  • 作者:Christian Cremer ; Hanna Braun ; Radoslav Mladenov…
  • 关键词:Angiogenin ; RNH1 ; Human cytolytic fusion protein ; Site ; directed mutagenesis ; Targeted therapy ; Leukemia
  • 刊名:Cancer Immunology, Immunotherapy
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:64
  • 期:12
  • 页码:1575-1586
  • 全文大小:2,064 KB
  • 参考文献:1.Weidle UH, Georges G, Brinkmann U (2012) Fully human targeted cytotoxic fusion proteins: new anticancer agents on the horizon. Cancer Genomics Proteomics 9:119鈥?33PubMed
    2.Monti DM, D鈥橝lessio G (2004) Cytosolic RNase inhibitor only affects RNases with intrinsic cytotoxicity. J Biol Chem 279:39195鈥?9198. doi:10.鈥?074/鈥媕bc.鈥婥400311200 CrossRef PubMed
    3.Leland PA, Raines RT (2001) Cancer chemotherapy鈥搑ibonucleases to the rescue. Chem Biol 8:405鈥?13PubMedCentral CrossRef PubMed
    4.Rutkoski TJ, Raines RT (2008) Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity. Curr Pharm Biotechnol 9:185鈥?89PubMedCentral CrossRef PubMed
    5.Cremer C, Vierbuchen T, Hein L et al (2015) Angiogenin mutants as novel effector molecules for the generation of fusion proteins with increased cytotoxic potential. J Immunother 38:85鈥?5. doi:10.鈥?097/鈥婥JI.鈥?000000000000053鈥?/span> CrossRef PubMed
    6.Czech A, Wende S, Morl M et al (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9:e1003767. doi:10.鈥?371/鈥媕ournal.鈥媝gen.鈥?003767 PubMedCentral CrossRef PubMed
    7.Pizzo E, Sarcinelli C, Sheng J et al (2013) Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci 126:4308鈥?319. doi:10.鈥?242/鈥媕cs.鈥?34551 PubMedCentral CrossRef PubMed
    8.Russo N, Shapiro R, Acharya KR et al (1994) Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc Natl Acad Sci USA 91:2920鈥?924PubMedCentral CrossRef PubMed
    9.Chen CZ, Shapiro R (1999) Superadditive and subadditive effects of 鈥渉ot spot鈥?mutations within the interfaces of placental ribonuclease inhibitor with angiogenin and ribonuclease A. Biochemistry 38:9273鈥?285. doi:10.鈥?021/鈥媌i990762a CrossRef PubMed
    10.Chen CZ, Shapiro R (1997) Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Proc Natl Acad Sci USA 94:1761鈥?766PubMedCentral CrossRef PubMed
    11.Acharya KR, Shapiro R, Allen SC et al (1994) Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc Natl Acad Sci USA 91:2915鈥?919PubMedCentral CrossRef PubMed
    12.Leonidas DD, Shapiro R, Subbarao GV et al (2002) Crystallographic studies on the role of the C-terminal segment of human angiogenin in defining enzymatic potency. Biochemistry 41:2552鈥?562CrossRef PubMed
    13.de Kruif J, Tijmensen M, Goldsein J et al (2000) Recombinant lipid-tagged antibody fragments as functional cell-surface receptors. Nat Med 6:223鈥?27. doi:10.鈥?038/鈥?2339 CrossRef PubMed
    14.Graziano RF, Tempest PR, White P et al (1995) Construction and characterization of a humanized anti-gamma-Ig receptor type I (Fc gamma RI) monoclonal antibody. J Immunol 155:4996鈥?002PubMed
    15.Ho SN, Hunt HD, Horton RM et al (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51鈥?9CrossRef PubMed
    16.Stocker M, Tur MK, Sasse S et al (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211鈥?19CrossRef PubMed
    17.Gallagher R, Collins S, Trujillo J et al (1979) Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54:713鈥?33PubMed
    18.Diehl V, Kirchner HH, Schaadt M et al (1981) Hodgkin鈥檚 disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol 101:111鈥?24CrossRef PubMed
    19.Schiffer S, Hristodorov D, Mladenov R et al (2013) Species-dependent functionality of the human cytolytic fusion proteins granzyme B-H22(scFv) and H22(scFv)-angiogenin in macrophages. Antibodies 2:9鈥?8CrossRef
    20.Kampmeier F, Ribbert M, Nachreiner T et al (2009) Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase. Bioconjug Chem 20:1010鈥?015. doi:10.鈥?021/鈥媌c9000257 CrossRef PubMed
    21.Niesen J, Stein C, Brehm H et al (2015) Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities. J Cancer Res Clin Oncol. doi:10.鈥?007/鈥媠00432-015-1975-5
    22.Nachreiner T, Kampmeier F, Thepen T et al (2008) Depletion of autoreactive B-lymphocytes by a recombinant myelin oligodendrocyte glycoprotein-based immunotoxin. J Neuroimmunol 195:28鈥?5. doi:10.鈥?016/鈥媕.鈥媕neuroim.鈥?008.鈥?1.鈥?01 CrossRef PubMed
    23.Ribbert T, Thepen T, Tur MK et al (2010) Recombinant, ETA鈥?based CD64 immunotoxins: improved efficacy by increased valency, both in vitro and in vivo in a chronic cutaneous inflammation model in human CD64 transgenic mice. Br J Dermatol 163:279鈥?86. doi:10.鈥?111/鈥媕.鈥?365-2133.鈥?010.鈥?9824.鈥媥 CrossRef PubMed
    24.St枚cker M, Pardo A, Hetzel C et al (2008) Eukaryotic expression and secretion of EGFP-labeled annexin A5. Protein Expr Purif 58:325鈥?31. doi:10.鈥?016/鈥媕.鈥媝ep.鈥?007.鈥?2.鈥?09 CrossRef PubMed
    25.Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597鈥?601CrossRef PubMed
    26.Krauss J, Arndt MA, Vu BK et al (2005) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 128:602鈥?09. doi:10.鈥?111/鈥媕.鈥?365-2141.鈥?005.鈥?5356.鈥媥 CrossRef PubMed
    27.Arndt MA, Krauss J, Vu BK et al (2005) A dimeric angiogenin immunofusion protein mediates selective toxicity toward CD22+ tumor cells. J Immunother 28:245鈥?51CrossRef PubMed
    28.Hendrzak JA, Wallace PK, Morahan PS (1994) Optimizing the detection of cell surface antigens on elicited or activated mouse peritoneal macrophages. Cytometry 17:349鈥?56. doi:10.鈥?002/鈥媍yto.鈥?90170412 CrossRef PubMed
    29.Leonidas DD, Shapiro R, Allen SC et al (1999) Refined crystal structures of native human angiogenin and two active site variants: implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth. J Mol Biol 285:1209鈥?233. doi:10.鈥?006/鈥媕mbi.鈥?998.鈥?378 CrossRef PubMed
    30.Dickson KA, Kang DK, Kwon YS et al (2009) Ribonuclease inhibitor regulates neovascularization by human angiogenin. Biochemistry 48:3804鈥?806. doi:10.鈥?021/鈥媌i9005094 PubMedCentral CrossRef PubMed
    31.Stahnke B, Thepen T, Stocker M et al (2008) Granzyme B-H22(scFv), a human immunotoxin targeting CD64 in acute myeloid leukemia of monocytic subtypes. Mol Cancer Ther 7:2924鈥?932. doi:10.鈥?158/鈥?535-7163.鈥婱CT-08-0554 CrossRef PubMed
    32.Schiffer S, Letzian S, Jost E et al (2013) Granzyme M as a novel effector molecule for human cytolytic fusion proteins: CD64-specific cytotoxicity of Gm-H22(scFv) against leukemic cells. Cancer Lett 341:178鈥?85. doi:10.鈥?016/鈥媕.鈥媍anlet.鈥?013.鈥?8.鈥?05 CrossRef PubMed
    33.Dunphy CH, Tang W (2007) The value of CD64 expression in distinguishing acute myeloid leukemia with monocytic differentiation from other subtypes of acute myeloid leukemia: a flow cytometric analysis of 64 cases. Arch Pathol Lab Med 131:748鈥?54. doi:10.1043/1543-2165(2007)131[748:TVOCEI]2.0.CO;2PubMed
    34.Santos IM, Franzon CM, Koga AH (2012) Laboratory diagnosis of chronic myelomonocytic leukemia and progression to acute leukemia in association with chronic lymphocytic leukemia: morphological features and immunophenotypic profile. Rev Bras Hematol Hemoter 34:242鈥?44. doi:10.鈥?581/鈥?516-8484.鈥?0120058 PubMedCentral CrossRef PubMed
    35.Schiffer S, Rosinke R, Jost E et al (2014) Targeted ex vivo reduction of CD64-positive monocytes in chronic myelomonocytic leukemia and acute myelomonocytic leukemia using human granzyme B-based cytolytic fusion proteins. Int J Cancer 135:1497鈥?508. doi:10.鈥?002/鈥媔jc.鈥?8786 CrossRef PubMed
    36.Karehed K, Dimberg A, Dahl S et al (2007) IFN-gamma-induced upregulation of Fcgamma-receptor-I during activation of monocytic cells requires the PKR and NFkappaB pathways. Mol Immunol 44:615鈥?24. doi:10.鈥?016/鈥媕.鈥媘olimm.鈥?006.鈥?1.鈥?13 CrossRef PubMed
    37.Wei H, Bera TK, Wayne AS et al (2013) A modified form of diphthamide causes immunotoxin resistance in a lymphoma cell line with a deletion of the WDR85 gene. J Biol Chem 288:12305鈥?2312. doi:10.鈥?074/鈥媕bc.鈥婱113.鈥?61343 PubMedCentral CrossRef PubMed
    38.Conway O鈥橞rien E, Prideaux S, Chevassut T (2014) The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014:103175. doi:10.鈥?155/鈥?014/鈥?03175 PubMedCentral PubMed
    39.Jankowska AM, Makishima H, Tiu RV et al (2011) Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 118:3932鈥?941. doi:10.鈥?182/鈥媌lood-2010-10-311019 PubMedCentral CrossRef PubMed
    40.Schnerch D, Yalcintepe J, Schmidts A et al (2012) Cell cycle control in acute myeloid leukemia. Am J Cancer Res 2:508鈥?28PubMedCentral PubMed
    41.Scholl C, Gilliland DG, Frohling S (2008) Deregulation of signaling pathways in acute myeloid leukemia. Semin Oncol 35:336鈥?45. doi:10.鈥?053/鈥媕.鈥媠eminoncol.鈥?008.鈥?4.鈥?04 CrossRef PubMed
    42.Gao X, Xu Z (2008) Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai) 40:619鈥?24CrossRef
    43.Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58:621鈥?31. doi:10.鈥?080/鈥?521654060095743鈥? CrossRef PubMed
    44.Peng Y, Li L, Huang M et al (2014) Angiogenin interacts with ribonuclease inhibitor regulating PI3K/AKT/mTOR signaling pathway in bladder cancer cells. Cell Signal 26:2782鈥?792. doi:10.鈥?016/鈥媕.鈥媍ellsig.鈥?014.鈥?8.鈥?21 CrossRef PubMed
    45.Sadagopan S, Veettil MV, Chakraborty S et al (2012) Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 31:4835鈥?847. doi:10.鈥?038/鈥媜nc.鈥?011.鈥?48 PubMedCentral CrossRef PubMed
    46.Ivanov P, Emara MM, Villen J et al (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613鈥?23. doi:10.鈥?016/鈥媕.鈥媘olcel.鈥?011.鈥?6.鈥?22 PubMedCentral CrossRef PubMed
  • 作者单位:Christian Cremer (1)
    Hanna Braun (1)
    Radoslav Mladenov (4)
    Lea Schenke (1)
    Xiaojing Cong (2) (3)
    Edgar Jost (5)
    Tim H. Br眉mmendorf (5)
    Rainer Fischer (4) (6)
    Paolo Carloni (2) (3)
    Stefan Barth (1) (7) (8)
    Thomas Nachreiner (1)

    1. Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstr. 20, 52074, Aachen, Germany
    4. Department of Pharmaceutical Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074, Aachen, Germany
    2. Department of Computational Biophysics, German Research School for Simulation Sciences (Joint Venture of RWTH Aachen University and Forschungszentrum J眉lich), 52428, J眉lich, Germany
    3. Institute for Advanced Simulations IAS-5, Computational Biomedicine, Forschungszentrum, J眉lich, Germany
    5. Department of Hematology and Oncology (Internal Medicine IV), University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
    6. Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
    7. South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Anzio Road, Observatory, Cape Town, 7925, South Africa
    8. Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Cancer Research
    Immunology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0851
文摘
Immunotoxins are fusion proteins that combine a targeting component such as an antibody fragment or ligand with a cytotoxic effector component that induces apoptosis in specific cell populations displaying the corresponding antigen or receptor. Human cytolytic fusion proteins (hCFPs) are less immunogenic than conventional immunotoxins because they contain human pro-apoptotic enzymes as effectors. However, one drawback of hCFPs is that target cells can protect themselves by expressing endogenous inhibitor proteins. Inhibitor-resistant enzyme mutants that maintain their cytotoxic activity are therefore promising effector domain candidates. We recently developed potent variants of the human ribonuclease angiogenin (Ang) that were either more active than the wild-type enzyme or less susceptible to inhibition because of their lower affinity for the ribonuclease inhibitor RNH1. However, combining the mutations was unsuccessful because although the enzyme retained its higher activity, its susceptibility to RNH1 reverted to wild-type levels. We therefore used molecular dynamic simulations to determine, at the atomic level, why the affinity for RNH1 reverted, and we developed strategies based on the introduction of further mutations to once again reduce the affinity of Ang for RNH1 while retaining its enhanced activity. We were able to generate a novel Ang variant with remarkable in vitro cytotoxicity against HL-60 cells and pro-inflammatory macrophages. We also demonstrated the pro-apoptotic potential of Ang-based hCFPs on cells freshly isolated from leukemia patients. Keywords Angiogenin RNH1 Human cytolytic fusion protein Site-directed mutagenesis Targeted therapy Leukemia

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700