Lichen photobionts of the rocky outcrops of Karadag massif (Crimean Peninsula)
详细信息    查看全文
  • 作者:A. Voytsekhovich ; A. Beck
  • 关键词:Lichens ; Additional photobiont ; Trebouxia ; New species
  • 刊名:Symbiosis
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:68
  • 期:1-3
  • 页码:9-24
  • 全文大小:1,031 KB
  • 参考文献:Ahmadjian V (1988) The lichen alga Trebouxia: does it occur free-living? Plant Syst Evol 158:243–247CrossRef
    Ahmadjian V (1993) The lichen symbiosis. Wiley, New York
    Ahmadjian V, Heikkilä H (1970) The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist 4:259–267CrossRef
    Aoki M, Nakano T, Kanda H, Deguchi H (1998) Photobionts isolated from Antarctic lichens. J Mar Biotechnol 6:39–43
    Archibald PA (1975) Trebouxia de Puymaly (Chlorophyceae, Chlorococcales) and Pseudotrebouxia gen. nov. (Chlorophyceae, Chlorococcales). Phycologia 14:125–13
    Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510
    Beck A (2002) Selektivität der Symbionten schwermetalltoleranter Flechten. Dissertation, Ludwig-Maximilians-Universität München, Munich
    Beck A, Mayr C (2012) Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont-photobiont interactions. Ecol Evol 2(12):3132–3144CrossRef PubMed PubMedCentral
    Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720CrossRef
    Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326CrossRef
    Bhattacharya D, Friedl T, Damberger S (1996) Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. Mol Biol Evol 13:978–989CrossRef PubMed
    Bischoff HW, Bold HC (1963) Phycological studies. IV. Some algae from Enchanted Rock and related algae species. Univ Tex Publ 6318:1–95
    Blaha J, Baloch E, Grube M (2006) High photobiont diversity associated with the euryoecious lichen-forming ascomycete Lecanora rupicola. Biol J Linn Soc 88(2):283–293
    Casano LM, Del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, Del Hoyo A, Guéra A, Barreno E (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? FEMS Microbiol Ecol 13:806–818
    Català Garcia S, Del Campo EM, Barreno E, Garcia-Breijo FG, Reig-Arminana J, Casano LM (2012) Development of complementary molecular markers seems crucial to detect the coexistence of different Trebouxia taxa in a single lichen thallus. In: The 7th IAL Symposium 2012. Lichens: from Genome to Ecosystems in a Changing World (9th–13th January 2012, Bangkok, Thailand), p 80
    Cordeiro LMC, Reis RA, Cruz LM, Stocker-Wörgötter E, Grube M, Iacomini M (2005) Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol Ecol 54:381–390CrossRef PubMed
    De Oliveira PM, Timsina B, Piercey-Normore MD (2012) Diversity of Ramalina sinensis and its photobiont in local populations. Lichenologist 44(5):649–660CrossRef
    Del Campo EM, Catala S, Gimeno J, Del Hoyo A, Martínez-Alberola F, Casano LM, Grube M, Barreno E (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiol Ecol 83:310–323CrossRef PubMed
    Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRef
    Engelen A, Convey P, Ott S (2010) Life history strategy of Lepraria borealis at an Antarctic inland site, Coal Nunatak. Lichenologist 42:339–346CrossRef
    Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft-, und Flechtenalgen. Gustav Fischer, Stuttgart
    Friedl T, Besendahl A, Pfeiffer P, Bhattacharya D (2000) The distribution of group I introns in lichen algae suggests that lichenization facilitates intron lateral transfer. Mol Phylogenet Evol 14:342–352CrossRef PubMed
    Golubkov VV, Matwiejuk A (2009) Some new records of Rhizocarpon from North-Eastern Poland and North-Western Belarus. Acta Mycol 44(2):201–210CrossRef
    Grube M, Cardinale M, Vieira de Castro J, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115CrossRef PubMed
    Guzow-Krzeminska B (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38:469–476CrossRef
    Hauck M, Helms G, Friedl T (2007) Photobiont selectivity in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Lichenologist 31:195–204CrossRef
    Helms G, Friedl T, Rambold G, Mayrhofer H (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33:73–86CrossRef
    Hestmark G (2009) New obsevations and records for Umbilicaria (Umbilicariaceae) in Bolivia. Bryologist 112(4):833–838CrossRef
    Hildreth KC, Ahmadjian V (1981) A study of Trebouxia and Pseudotrebouxia isolates from different lichens. Lichenologist 13:65–86CrossRef
    Khodosovtsev AYe (2003) An annotated list of the lichen forming fungi of the Karadag Natural Reserve. News of Biosphere Reserve “Askania-Nova” 5:31–43
    Khodosovtsev AYe, Vondrák J, Šoun J (2007) New lichenized and lichenicolous fungi for the Crimean Peninsula (Ukraine). Chornomors’k Bot Z 3:109–118
    Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & bisby’s dictionary of the fungi, 10th edn. Cromwell Press, Trowbridge
    Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4 - Nostocales. Algol Stud 56:247–345
    Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103(4):645–660CrossRef
    Magnusson AH (1927) Description of new or not properly defined Lichens. -Meddelelser fran Göteborgs Botaniska Trädgard 3:11–23
    Mansournia MR, Wu B, Matsushita N, Hogetsu T (2012) Genotypic analysis of the foliose lichen Parmotrema tinctorum using microsatellite markers: association of mycobiont and photobiont, and their reproductive mode. Lichenologist 44(3):419–440CrossRef
    Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenized Ascomycota). Mycol Prog 7:147–160CrossRef
    Muggia L, Baloch E, Stabentheiner E, Grube M, Wedin M (2011) Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. Microbiol Ecol 75(2):255–272CrossRef
    Muggia L, Pérez-Ortega S, Kopun T, Zelling G, Grube M (2014) Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot 114(3):463–475CrossRef PubMed PubMedCentral
    Nyati Sh, Scherrer S, Honegger R (2006) Green algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes). In: Photobiont Diversity in Teloschistaceae (Lecanoromycetes). Ph.D. dissertation, University of Zürich, Switzerland pp:14–45
    Ohmura Y, Kawachi M, Kasai F, Watanabe MM, Takeshita S (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109(1):43–59CrossRef
    Oxner AN (1974) Handbook of the Lichens of the USSR 2. Morphology, Systematic and Geographical Distribution. Nauka, Leningrad, USSR
    Peršoh D, Beck A, Rambold G (2004) The distribution of ascus types and photobiontal selection in Lecanoromycetes (Ascomycota) against the background of a revised SSU nrDNA phylogeny. Mycol Prog 3:103–121CrossRef
    Piercey-Normore M (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344CrossRef PubMed
    Rogers SO, Bedich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76CrossRef PubMed
    Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula. Mol Biol Evol 19(8):1209–1217
    Ruprecht U, Brunauer G, Printzen C (2012) Genetic diversity of photobionts in Antarctic lecideoid lichens from an ecological viewpoint. Lichenologist 44(5):661–678
    Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46CrossRef PubMed
    St. Clair LL, Seaward MRD (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Kluwer Academic Publishers, LondonCrossRef
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRef PubMed
    Swofford DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
    Thüs H, Muggia L, Perez-Ortega S, Favero-Longo SE, Joneson S, O`Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew C J, Luecking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415
    Tschermak-Woess E (1978) Myrmecia reticulata as a phycobiont and free-living – free-living Trebouxia – the problem of Stenocybe septata. Lichenologist 10:69–79CrossRef
    Tschermak-Woess E (1989) Developmental studies in trebouxioid algae and taxonomical consequences. Plant Syst Evol 164:161–195CrossRef
    Vargas Castillio R, Beck A (2012a) Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama desert, northern Chile. Fungal Biol 116:665–676CrossRef
    Vargas Castillio R, Beck A (2012b) Disentangling the species diversity of Caloplaca Th. Fr. In Chile. In the 7th IAL symposium 2012. Lichens: from genome to ecosystems in a changing world (9th–13th January 2012, Chaophya Park Hotel, Bangkok, Thailand), p. 69
    Voytsekhovich A, Kashevarov GP (2010) Pigment content of photosynthetic apparatus of green algae (Chlorophyta) – the photobionts of lichens. Int J Algae 12(3):282–292CrossRef
    Voytsekhovich A, Dymytrova L, Nadyeina O (2011a) Photobiont composition of some taxa of the genera Micarea and Placynthiella (Lecanoromycetes, lichenized Ascomycota) from Ukraine. Folia Cryptog Estonica 48:135–148
    Voytsekhovich A, Mikhailyuk TI, Darienko TM (2011b) Lichen photobionts. 1: biodiversity, ecophysiology and co-evolution with the mycobiont. Algologia 21:3–26
    Voytsekhovich A, Mikhailyuk TI, Darienko TM (2011c) Lichen photobionts. 2: origin and correlation with mycobiont. Algologia 21:151–177
    Werth S (2011) Biogeography and phylogeography of lichen fungi and their photobionts. In: Fontaneto D (ed) Biogeography of micro-organisms: Is everything small everywhere? Cambridge University Press, pp 191–208
    Werth S (2012) Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community. Lichenologist 44(4):543–560CrossRef
    Werth S, Sork VL (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California. Am J Bot 97:821–830CrossRef PubMed
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Inns MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322
    Yahr R, Vilgalys R, DePriest PT (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol Ecol 13:3367–3378CrossRef PubMed
  • 作者单位:A. Voytsekhovich (1) (2)
    A. Beck (2)

    1. Department of Lichenology and Bryology, M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska str. 2, Kyiv, 01601, Ukraine
    2. Department of Lichenology and Bryology, Botanische Staatssammlung München, Menzinger Str. 67, 80638, München, Germany
  • 刊物主题:Evolutionary Biology; Developmental Biology; Microbiology; Plant Sciences; Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1878-7665
文摘
Despite the fact that lichen algae have been explored for over100 years, their diversity, taxonomy and ecology still remains understudied. In present study we analyzed 114 specimens representing 72 lichen taxa collected on the Crimean Peninsula, culturing and sequencing their algal partners. In total we identified 26 taxa of photobionts representing 10 algal genera (Asterochloris, Chloroidium, Dilabifilum, Diplosphaera, Gloeocapsa, Myrmecia, Nostoc, Printzina, Stichococcus, Trebouxia). As most of the studied lichens (more than 80 % of studied lichen species) contained Trebouxia, for which morphology-based identification is often difficult and insufficient, we additionally used molecular methods. According to the molecular phylogeny of internal transcribed spacer (ITS) rDNA, Trebouxia species were related to three main clades: “Arboricola” (88.9 % of the investigated Trebouxia-containing lichens), “Impressa” (4.4 %) and “Simplex” (6.7 %). Based on results of molecular phylogeny and morphology three new species of Trebouxia, namely T. solaris, T. vagua and T. cretacea were described. In several lichens, two coexisting Trebouxia species were revealed in the same thallus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700