Clinical Functional MRI of the kidneys
详细信息    查看全文
  • 作者:Shila Pazahr (1)
    Andreas Boss (1)
    Cristina Rossi (1)
  • 关键词:MRI ; Kidney ; DWI ; DTI ; ASL ; BOLD ; Renal function
  • 刊名:Current Radiology Reports
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:1
  • 期:2
  • 页码:115-125
  • 全文大小:664KB
  • 参考文献:1. van Heeswijk RB, Bonanno G, Coppo S, Coristine A, Kober T, Stuber M. Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng. 2012;40:99鈥?19. CrossRef
    2. 鈥?Kim S, Naik M, Sigmund E, Taouli B. Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am. 2008;16:585鈥?6. / This review article provides a comprehensive overview on the technique of DWI applied to the kidneys and summarizes applications of diffusion-weighted MRI for the assessment of diffuse renal diseases and focal renal lesions.
    3. Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med. 2004;51:353鈥?1. CrossRef
    4. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996;94:3271鈥?. CrossRef
    5. Springer F, Martirosian P, Boss A, Claussen CD, Schick F. Current problems and future opportunities of abdominal magnetic resonance imaging at higher field strengths. Top Magn Reson Imaging. 2010;21:141鈥?. CrossRef
    6. Nehrke K, Bornet P. DREAM鈥攁 novel approach for robust, ultrafast, multislice B1 mapping. Magn Reson Med. 2012;68:1517鈥?6. CrossRef
    7. Gauden AJ, Phal PM, Drummond KJ. MRI safety: nephrogenic systemic fibrosis and other risks. J Clin Neurosci. 2010;17:1097鈥?04. CrossRef
    8. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401鈥?.
    9. Gaudiano C, Clementi V, Busato F, Corcioni B, Orrei MG, Ferramosca E, Fabbri E, Berardi P, Santoro A, Golfieri R. Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol. 2013;. doi:10.1007/s00330-012-2749-y .
    10. Ries M, Jones RA, Basseau F, Moonen CT, Grenier N. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging. 2001;14:42鈥?. CrossRef
    11. Sigmund EE, Vivier PH, Sui D, Lamparello NA, Tantillo K, Mikheev A, Rusinek H, Babb JS, Storey P, Lee VS, Chandarana H. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology. 2012;263:758鈥?9. CrossRef
    12. Wittsack HJ, Lanzman RS, Quentin M, Kuhlemann J, Klasen J, Pentang G, Riegger C, Antoch G, Blondin D. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney: correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Investig Radiol. 2012;47:226鈥?0. CrossRef
    13. Zhang J, Tehrani YM, Wang L, Ishill NM, Schwartz LH, Hricak H. Renal masses: characterization with diffusion-weighted MR imaging鈥攁 preliminary experience. Radiology. 2008;247:458鈥?4. CrossRef
    14. Inci E, Hocaoglu E, Aydin S, Cimilli T. Diffusion-weighted magnetic resonance imaging in evaluation of primary solid and cystic renal masses using the Bosniak classification. Eur J Radiol. 2012;81:815鈥?0. CrossRef
    15. Yu X, Lin M, Ouyang H, Zhou C, Zhang H. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol. 2012;81:3061鈥?. CrossRef
    16. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol. 2011;46:285鈥?1. CrossRef
    17. 鈥⑩€?Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology. 2011;259:25鈥?8. / This review article provides a comprehensive overview on the most recent applications of diffusion- / weighted MRI for the assessment of renal allografts dysfunctions.
    18. Hueper K, Gutberlet M, Rodt T, Gwinner W, Lehner F, Wacker F, Galanski M, Hartung D. Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol. 2011;21:2427鈥?3. CrossRef
    19. Palmucci S, Mauro LA, Failla G, Foti PV, Milone P, Sinagra N, Zerbo D, Veroux P, Ettorre GC, Veroux M. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys: updating results in 35 patients. Transplant Proc. 2012;44:1884鈥?. CrossRef
    20. Lu L, Sedor JR, Gulani V, et al. Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol. 2011;34:476鈥?2. CrossRef
    21. Hueper K, Hartung D, Gutberlet M, Gueler F, Sann H, Husen B, Wacker F, Reiche D. Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Investig Radiol. 2012;47:430鈥?. CrossRef
    22. Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F. High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo. 2005;177:1625鈥?0. CrossRef
    23. Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I. Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA. 2012;25:145鈥?3. CrossRef
    24. Wu WC, Su MY, Chang CC, Tseng WY, Liu KL. Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology. 2011;261:845鈥?3. CrossRef
    25. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, Part 1: technique and artifacts. Am J Neuroradiol. 2008;29:1228鈥?4. CrossRef
    26. Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, Fain SB. Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging. 2011;33:1414鈥?1. CrossRef
    27. Rossi C, Artunc F, Martirosian P, Schlemmer HP, Schick F, Boss A. Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Investig Radiol. 2012;47:490鈥?. CrossRef
    28. Pedrosa I, Rafatzand K, Robson P, Wagner AA, Atkins MB, Rofsky NM, Alsop DC. Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol. 2012;22:484鈥?2. CrossRef
    29. Lanzman RS, Robson PM, Sun MR, Patel AD, Mentore K, Wagner AA, Genega EM, Rofsky NM, Alsop DC, Pedrosa I. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology. 2012;265:799鈥?08. CrossRef
    30. Schor-Bardach R, Alsop DC, Pedrosa I, Solazzo SA, Wang X, Marquis RP, Atkins MB, Regan M, Signoretti S, Lenkinski RE, Goldberg SN. Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology. 2009;251:731鈥?2. CrossRef
    31. Pedersen M, Dissing TH, M酶rkenborg J, St酶dkilde-J酶rgensen H, Hansen LH, Pedersen LB, Grenier N, Fr酶kiaer J. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int. 2005;67:2305鈥?2. CrossRef
    32. Simon-Zoula SC, Hofmann L, Giger A, Vogt B, Vock P, Frey FJ, Boesch C. Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study. NMR Biomed. 2006;19:84鈥?. CrossRef
    33. Xin-Long P, Jing-Xia X, Jian-Yu L, Song W, Xin-Kui T. A preliminary study of blood-oxygen-level-dependent MRI in patients with chronic kidney disease. Magn Reson Imaging. 2012;30:330鈥?. CrossRef
    34. Yin WJ, Liu F, Li XM, Yang L, Zhao S, Huang ZX, Huang YQ, Liu RB. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol. 2012;81:1426鈥?1. CrossRef
    35. 鈥?Prasad P, Li LP, Halter S, Cabray J, Ye M, Batlle D. Evaluation of renal hypoxia in diabetic mice by BOLD MRI. Investig Radiol. 2010;45:1鈥?. / This study showed that monitoring of progressive renal hypoxia in a mouse model of diabetic kidney disease is feasible using BOLD MRI.
    36. Xiao W, Xu J, Wang Q, Xu Y, Zhang M. Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol. 2012;81:838鈥?5. CrossRef
    37. Park SY, Kim CK, Park BK, Huh W, Kim SJ, Kim B. Evaluation of transplanted kidneys using blood oxygenation level-dependent MRI at 3 T: a preliminary study. Am J Roentgenol. 2012;198:1108鈥?4. CrossRef
    38. Min JH, Kim CK, Park BK, Kim E, Kim B. Assessment of renal lesions with blood oxygenation level-dependent MRI at 3 T: preliminary experience. Am J Roentgenol. 2011;197:489鈥?4. CrossRef
    39. Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Investig Radiol. 2011;46:41鈥?. CrossRef
    40. 鈥⑩€?Zhang Y, Wang J, Yang X, Wang X, Zhang J, Fang J, Jiang X. The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI. Contrast Media Mol Imaging. 2012; 7:418鈥?5. / This study performed on rabbits showed that the administration of iodinated contrast media results in longer- / term hypo- / perfusion ( / assessed using ASL MRI) / of the whole kidney and in decreased oxygenation ( / assessed using BOLD MRI) / of the medulla.
    41. Haneder S, Augustin J, Jost G, Pietsch H, Lengsfeld P, Kr盲mer BK, Schoenberg SO, Meyer M, Attenberger UI, Michaely HJ. Impact of iso- and low-osmolar iodinated contrast agents on BOLD and diffusion MRI in swine kidneys. Investig Radiol. 2012;47:299鈥?05. CrossRef
    42. Donati OF, Nanz D, Serra AL, Boss A. Quantitative BOLD response of the renal medulla to hyperoxic challenge at 1.5 T and 3.0 T. NMR Biomed. 2012;25:1133鈥?. CrossRef
    43. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 2012;81:684鈥?. CrossRef
    44. Lee VS, Rusinek H, Noz ME, Lee P, Raghavan M, Kramer EL. Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology. 2003;227:289鈥?4. CrossRef
    45. Hackstein N, Heckrodt J, Rau WS. Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland鈥揚atlak plot technique. J Magn Reson Imaging. 2003;18:714鈥?5. CrossRef
    46. Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA. Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging. 2006;24:1117鈥?3. CrossRef
    47. Boss A, Martirosian P, Gehrmann M, Artunc F, Risler T, Oesingmann N, Claussen CD, Schick F, K眉per K, Schlemmer HP. Quantitative assessment of glomerular filtration rate with MR gadolinium slope clearance measurements: a phase I trial. Radiology. 2007;242:783鈥?0. CrossRef
    48. Rohrschneider WK, Haufe S, Wiesel M, T枚nshoff B, Wunsch R, Darge K, Clorius JH, Tr枚ger J. Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology. 2002;224:683鈥?4. CrossRef
    49. Rossi C, Boss A, Artunc F, Yildiz S, Martirosian P, Dittmann H, Claussen CD, Heyne N, Schick F, Schlemmer HP. Comprehensive assessment of renal function and vessel morphology in potential living kidney donors: an MRI-based approach. Investig Radiol. 2009;44:705鈥?1. CrossRef
    50. Artunc F, Yildiz S, Rossi C, Boss A, Dittmann H, Schlemmer HP, Risler T, Heyne N. Simultaneous evaluation of renal morphology and function in live kidney donors using dynamic magnetic resonance imaging. Nephrol Dial Transplant. 2010;25:1986鈥?1. CrossRef
    51. Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS. Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging. 2009;29:371鈥?2. CrossRef
    52. Vivier PH, Storey P, Rusinek H, Zhang JL, Yamamoto A, Tantillo K, Khan U, Lim RP, Babb JS, John D, Teperman LW, Chandarana H, Friedman K, Benstein JA, Skolnik EY, Lee VS. Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis. Radiology. 2011;259:462鈥?0. CrossRef
    53. Katzberg RW, Buonocore MH, Low R, Hu B, Jain K, Castillo M, Troxel S, Nguyen MM. MR determination of glomerular filtration rate in subjects with solitary kidneys in comparison to clinical standards of renal function: feasibility and preliminary report. Contrast Media Mol Imaging. 2009;4:51鈥?5. CrossRef
    54. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011;33:128鈥?5. CrossRef
  • 作者单位:Shila Pazahr (1)
    Andreas Boss (1)
    Cristina Rossi (1)

    1. Department of Diagnostic and Interventional Radiology, University Hospital Zurich, R盲mistr. 100, 8091, Zurich, Switzerland
文摘
In functional renal magnetic resonance imaging (MRI), advanced techniques are applied to obtain information on a functional and molecular level from the kidney tissue beyond pure morphology. Techniques such as diffusion-weighted and diffusion tensor imaging, arterial spin labelling, and blood oxygenation level-dependent imaging provide potential biomarkers of organ function. Moreover, dynamic contrast-enhanced techniques after the intra-venous injection of gadolinium-chelates may be used to assess glomerular filtration and urinary excretion. This review summarizes recent developments of contrast- and non-contrast-enhanced MRI techniques for assessment of renal function in a clinical setting. The physiological background and the sequence techniques are described in detail. Potential clinical applications of the different techniques are discussed regarding their potential usefulness in the assessment of parenchymal diseases, urinary tract anomalies, transplant kidney function, and renal masses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700