Conformation preference and related intramolecular noncovalent interaction of selected short chain chlorinated paraffins
详细信息    查看全文
  • 作者:Yuzhen Sun ; Wenxiao Pan ; Jianjie Fu ; Aiqian Zhang ; Qinghua Zhang
  • 关键词:short chain chlorinated paraffins ; intramolecular noncovalent interactions ; conformation preference ; chlorination substitution mode
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:3
  • 页码:338-349
  • 全文大小:1,143 KB
  • 参考文献:1.Tomy GT, Stern GA, Lockhart WL, Muir DCG. Environ Sci Technol, 1999, 33: 2858–2863CrossRef
    2.Tomy GT, Fisk AT, Westmore JB, Muir DCG. Environmental chemistry and toxicology of polychlorinated n-alkanes. In: Ware GW, Ed. Reviews of Environmental Contamination and Toxicology. Volume 158. New York: Springer-Verlag, 1998. 53–128CrossRef
    3.Fiedler H. Short-chain chlorinated paraffins: production, use and international regulations. In: Boer J, Ed. The Handbook of Environmental Chemistry. Volume 10. Chlorinated Paraffins. Berlin/Heidelberg: Springer-Verlag, 2010. 1–40CrossRef
    4.Sverko E, Tomy GT, Märvin CH, Muir DCG. Environ Sci Technol, 2012, 46: 4697–4698CrossRef
    5.Wang T, Wang YW, Jiang GB. Environ Sci Technol, 2013, 47: 11924–11925CrossRef
    6.Chen MY, Luo XJ, Zhang XL, He MJ, Chen SJ, Mai BX. Environ Sci Technol, 2011, 45: 9936–9943CrossRef
    7.Geng NB, Zhang HJ, Zhang BQ, Wu P, Wang FD, Yu ZK, Chen JP. Environ Sci Technol, 2015, 49: 3076–3083CrossRef
    8.Drouillard KG, Tomy GT, Muir DCG, Friesen KJ. Environ Toxicol Chem, 1998, 17: 1252–1260
    9.Muir DCG, Stern G, Tomy G. Chlorinated paraffins. In: Hutzinger O, Paasivirta J, Eds. The Handbook of Environmental Chemistry. Volume 3. Anthropogenic Compounds Part K. New Types of Persistent Halogenated Compounds. Berlin/Heidelberg: Springer-Verlag, 2000. 203–236
    10.Ma XD, Zhang HJ, Zhou HQ, Na GS, Wang Z, Chen C, Chen JW, Chen JP. Atmos Environ, 2014, 90: 10–15CrossRef
    11.http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/sccps.ht ml, 2015-04-27
    12.Glüge J, Bogdal C, Scheringer M, Buser AM, Hungerbühler K. J Phys Chem Ref Data, 2013, 42: 023103CrossRef
    13.Li C, Xie HB, Chen JW, Yang XH, Zhang YF, Qiao XL. Environ Sci Technol, 2014, 48: 13808–13816CrossRef
    14.Müller-Dethlefs K, Hobza P. Chem Rev, 2000, 100: 143–168CrossRef
    15.Aoki M, Ohashi Y, Masuda S, Ojima S, Ueno N. J Chem Phys, 2005, 122: 194508CrossRef
    16.Vetter AJ, Rieth RD, Brennessel WW, Jones WD. J Am Chem Soc, 2009, 131: 10742–10752CrossRef
    17.Takahashi O, Kohno Y, Nishio M. Chem Rev, 2010, 110: 6049–6076CrossRef
    18.Morino Y, Kuchitsu K. J Chem Phys, 1958, 28: 175–184CrossRef
    19.Hirota E. J Chem Phys, 1962, 37: 283–291CrossRef
    20.Monteiro NKV, Firme CL. J Phys Chem A, 2014, 118: 1730–1740CrossRef
    21.Johansson MP, Swart M. Phys Chem Chem Phys, 2013, 15: 11543–11553CrossRef
    22.Bader RFW. Chem Rev, 1991, 91: 893–928CrossRef
    23.Koch U, Popelier PLA. J Phys Chem, 1995, 99: 9747–9754CrossRef
    24.Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang WT. J Am Chem Soc, 2010, 132: 6498–6506CrossRef
    25.Lopes Jesus AJ, Rosado MT, Reva I, Fausto R, Eusébio ME, Redinha JS. J Phys Chem A, 2006, 110: 4169–4179CrossRef
    26.Zhao Y, Truhlar DG. J Chem Theory Comput, 2006, 2: 1009–1018CrossRef
    27.Jablonski M. J Phys Chem A, 2012, 116: 3753–3764CrossRef
    28.Forni A. J Phys Chem A, 2009, 113: 3403–3412CrossRef
    29.Wodrich MD, Corminboeuf C, Schleyer PvR. Org Lett, 2006, 8: 3631–3634CrossRef
    30.Schreiner PR, Fokin AA, Pascal RA, de Meijere A. Org Lett, 2006, 8: 3635–3638CrossRef
    31.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Revision B.01. Wallingford, CT: Gaussian, Inc., 2009
    32.Liu RR, Zhang CX, Kang LY, Sun XM, Zhao Y. RSC Adv, 2015, 5: 37988–37994CrossRef
    33.Colebourne N, Stern ES. J Chem Soc, 1965: 3599–3605
    34.Biegler-König F, Schönbohm J. J Comput Chem, 2002, 23: 1489–1494CrossRef
    35.Jin R, Sun W. Sci China Chem, 2012, 55: 1428–1434CrossRef
    36.Zhao Y, Truhlar DG. Acc Chem Res, 2008, 41: 157–167CrossRef
    37.Yan XQ, Zhao XR, Wang H, Jin WJ. J Phys Chem B, 2014, 118: 1080–1087CrossRef
    38.Laurent A, Jacquemin D. Sci China Chem, 2014, 57: 1363–1368CrossRef
    39.Walker M, Harvey A, Sen A, Dessent C. J Phys Chem A, 2013, 117: 12590–12600CrossRef
    40.Cerón-Carrasco J, Jacquemin D, Graton J, Thany S, Questel JY. J Phys Chem A, 2013, 117: 3944–3953CrossRef
    41.Wladkowski BD, Broadwater SJ. J Chem Edu, 2002, 79: 230–233CrossRef
    42.Thomas TD, Sæthre LJ, Børve KJ. Phys Chem Chem Phys, 2007, 9: 719–724CrossRef
    43.Pan WX, Zhang DJ, Han Z, Zhan JH, Liu CB. Environ Sci Technol, 2013, 47: 8489–8498
  • 作者单位:Yuzhen Sun (1)
    Wenxiao Pan (1)
    Jianjie Fu (1)
    Aiqian Zhang (1) (2)
    Qinghua Zhang (1) (2)

    1. State Key Laboratory of Environmental Chemistry and Ecotoxicology; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
    2. Institute of Environment and Health, JiangHan University, Wuhan, 430056, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Short chain chlorinated paraffins (SCCPs) are not only research focus of environmental issues but also interesting model molecules for organic chemistry which exhibit diverse conformation preference and intramolecular noncovalent interactions (NCIs). A systematic study was conducted to reveal the conformation preference and the related intramolecular NCIs in two C10-isomers of SCCPs, 5,5,6,6-tetrachlorodecane and 4,4,6,6-tetrachlorodecane. The overall conformation profile was determined on the basis of relative energies calculated at the MP2/6-311++G(d,p) level with the geometries optimized by B3LYP/6-311++G(d,p) method. Then, quantum theory of atoms in molecules (QTAIM) has been adopted to identify the NCIs in the selected conformers of the model molecules at both B3LYP/6-311++G(d,p) and M06-2X/aug-cc-pvdz level. Different chlorine substitution modes result in varied conformation preference. No obvious gauche effect can be observed for the SCCPs with chlorination on adjacent carbon atoms. The most stable conformer of 5,5,6,6-tetrachlorodecane (tTt) has its three dihedral angles in the T configuration, and there is no intramolecular NCIs found in this molecule. On the contrary, the chlorination on interval carbon atoms favors the adoption of gauche configuration for the H–C–C–Cl axis. Not only intramolecular H···Cl contacts but also H···H interactions have been identified as driving forces to compensate the instability from steric crowding of the gauche configuration. The gggg and g′g′g′g′ conformers are the most popular ones, while the populations of tggg and tg′g′g′ conformer are second to those of the gggg and g′g′g′g′ conformers. Meanwhile, the M06-2X method with large basis sets is preferred for identification of subtle intramolecular NCIs in large molecules like SCCPs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700