Quantitative analysis of Cryptosporidium growth in in vitro culture—the impact of parasite density on the success of infection
详细信息    查看全文
  • 作者:Anna Paziewska-Harris ; Martin Singer ; Gerard Schoone…
  • 关键词:Cryptosporidium parvum ; HCT ; 8 human adenocarcinoma cells ; qPCR ; Host ; cell ; free culture
  • 刊名:Parasitology Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:115
  • 期:1
  • 页码:329-337
  • 全文大小:503 KB
  • 参考文献:Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445CrossRef PubMed
    Aldeyarbi HM, Karanis P. 2015. The ultra-structural similarities between Cryptosporidium parvum and the Gregarines. J Eukaryot Microbiol. In press, doi: 10.​1111/​jeu.​12250 .
    Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503PubMedCentral PubMed
    Castellanos-Gonzalez A, Cabada MM, Nichols J, Gomez G, White AC Jr (2013) Human primary intestinal epithelial cells as an improved in vitro model for Cryptosporidium parvum infection. Infect Immun 81:1996–2001. doi:10.​1128/​IAI.​01131-12 PubMedCentral CrossRef PubMed
    Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg 75:851–857PubMed
    DuPont HL, Chappell CL, Sterling CR, Okhuysen PC, Rose JB, Jakubowski W (1995) The infectivity of Cryptosporidium parvumin healthy volunteers. N Engl J Med 332:855–859CrossRef PubMed
    Escourt A (2011) Characterisation of Cryptosporidium growth and propagation in cell free environments. University of Murdoch, Dissertation
    Garvey M, Farrell H, Cormican M, Rowan N (2010) Investigations of the relationship between use of in vitro cellculture-quantitative PCR and a mouse-based bioassay for evaluating critical factors affecting the disinfection performance of pulsed UV light for treating Cryptosporidium parvum oocysts in saline. J Microbiol Methods 80:267–273. doi:10.​1016/​j.​mimet.​2010.​01.​017 CrossRef PubMed
    Girouard D, Gallant J, Akiyoshi DE, Nunnari J, Tzipori S (2006) Failure to propagate Cryptosporidium spp. in cell-free culture. J Parasitol 92:399–400CrossRef PubMed
    Hadfield SJ, Robinson G, Elwin K, Chalmers RM (2011) Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. J Clin Microbiol 49:918–924. doi:10.​1128/​JCM.​01733-10
    Hijjawi NS, Meloni BP, Morgan UM, Thompson RC (2001) Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol 31:1048–1055CrossRef PubMed
    Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RC (2002) Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 32:1719–1726CrossRef PubMed
    Hijjawi NS, Meloni BP, Ng’anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RC (2004) Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 34:769–777CrossRef PubMed
    Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U (2010) Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 169:29–36. doi:10.​1016/​j.​vetpar.​2009.​12.​021 CrossRef PubMed
    Huang L, Zhu H, Zhang S, Wang R, Liu L, Jian F, Ning C, Zhang L (2014) An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Exp Parasitol 147:41–47. doi:10.​1016/​j.​exppara.​2014.​10.​007 CrossRef PubMed
    Karanis P, Aldeyarbi HM (2011) Evolution of Cryptosporidium in vitro culture. Int J Parasitol 41:1231–1242. doi:10.​1016/​j.​ijpara.​2011.​08.​001 CrossRef PubMed
    Koh W, Clode PL, Monis P, Thompson RC (2013) Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors 6:270. doi:10.​1186/​1756-3305-6-270 PubMedCentral CrossRef PubMed
    Koloren Z, Dinçer S (2009) Transient expression of red and yellow fluorescent protein vectors in HCT-8 cells infected with Cryptosporidium parvum. Parasitol Res 105:1023–1029. doi:10.​1007/​s00436-009-1514-x CrossRef PubMed
    Parr JB, Sevilleja JE, Samie A, Alcantara C, Stroup SE, Kohli A, Fayer R, Lima AA, Houpt ER, Guerrant RL (2007) Detection and quantification of Cryptosporidium in HCT-8 cells and human fecal specimens using real-time polymerase chain reaction. Am J Trop Med Hyg 76:938–942
    Rochelle PA, Upton SJ, Montelone BA, Woods K (2005) The response of Cryptosporidium parvum to UV light. Trends Parasitol 21:81–87. doi:10.​1016/​j.​pt.​2004.​11.​009 CrossRef PubMed
    Shahiduzzaman M, Dyachenko V, Obwaller A, Unglaube S, Daugschies A (2009) Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Vet Parasitol 162:271–277. doi:10.​1016/​j.​vetpar.​2009.​03.​009 CrossRef PubMed
    Shahiduzzaman M, Dyachenko V, Keidel J, Schmäschke R, Daugschies A (2010) Combination of cell culture and quantitative PCR (cc-qPCR) to assess disinfectants efficacy on Cryptosporidium oocysts under standardized conditions. Vet Parasitol 167:43–49. doi:10.​1016/​j.​vetpar.​2009.​09.​042 CrossRef PubMed
    Valigurová A, Hofmannová L, Koudela B, Vávra J (2007) An ultrastructural comparison of the attachment sites between Gregarinasteini and Cryptosporidium muris. J Eukaryot Microbiol 54:495–510PubMed
    Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Slapeta J (2008) Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol 38:913–922CrossRef PubMed
    Varughese EA, Bennett-Stamper CL, Wymer LJ, Yadav JS (2014) A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum. J Microbiol Methods 106:47–54. doi:10.​1016/​j.​mimet.​2014.​07.​017 CrossRef PubMed
    Yang R, Elankumaran Y, Hijjawi N, Ryan U (2015) Validation of cell-free culture using scanning electron microscopy (SEM) and gene expression studies. Exp Parasitol 153:55–62. doi:10.​1016/​j.​exppara.​2015.​03.​002 CrossRef PubMed
    Zhang L, Sheoran AS, Widmer G (2009) Cryptosporidium parvum DNA replication in cell-free culture. J Parasitol 95:1239–1242. doi:10.​1645/​GE-2052.​1 PubMedCentral CrossRef PubMed
  • 作者单位:Anna Paziewska-Harris (1)
    Martin Singer (2)
    Gerard Schoone (1)
    Henk Schallig (1)

    1. KIT Biomedical Research, Royal Tropical Institute, Meibergdreef 39, 1105 AZ, Amsterdam, The Netherlands
    2. Current address: Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Medical Microbiology
    Microbiology
    Immunology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1955
文摘
Cryptosporidium is an important waterborne pathogen for which no treatment or vaccination is available. This study set out to quantify DNA replication of Cryptosporidium parvum in vitro. Cryptosporidium DNA could be detected at up to 60 % of input level in both host-cell-free and host cell containing cultures 6 days after infection with living sporozoites, but was lost within 2 days in cultures inoculated with UV-inactivated sporozoites. Total DNA increased between days 2 and 6, evidence of successful DNA replication in both cell-free and host-cell-containing cultures. Overall however, only a small fraction (up to 5 %) of parasite DNA could be found associated with host cells or bound to plastic of the cell-free cultures, and the majority of parasite DNA was present in the cell culture medium, separable by simple decantation. After 2 days, in host-cell-containing cultures, the parasite DNA could be concentrated by slow centrifugation, suggesting that it was associated with intact parasite cells, but at 6 days, the majority could not be centrifuged and is therefore thought to have represented copies associated with dead and degraded parasites. In cell-free cultures and in larger plates, the majority of DNA was in this form. Performance of the parasite was best in small culture plates, and least in the largest plate sizes. We interpret these results as suggesting that Cryptosporidium sporozoites first bind to the host cell monolayer or to the plasticware, but then by 2 days, there has been a substantial release of parasites back into the medium. Host-cell-free cultures also supported modest replication and may have represented DNA synthesis in cells beginning merogony. The role of the host cells is unclear, as so much of the parasite DNA is released into the medium. Host cells may provide a feeder role, conditioning the medium for Cryptosporidium development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700