Thermal conductivities of methane–methylcyclohexane and tetrabutylammonium bromide clathrate hydrate
详细信息    查看全文
  • 作者:Dongliang Li ; Deqing Liang ; Hao Peng…
  • 关键词:Thermal conductivity ; Hydrate structure ; Methylcyclohexane ; Tetrabutylammonium bromide
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1391-1397
  • 全文大小:684 KB
  • 参考文献:1.Sloan ED, Carolyn AK. Clathrate hydrates of natural gases. 3rd ed. New York: CRC Press; 2008.
    2.Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM. A new clathrate hydrate structure. Nature. 1987;325:135–6.CrossRef
    3.Tanasawa I, Takao S. Clathrate hydrate slurry of tetra-n-butylammonium bromide as a cold-storage material. In: 4th international conference on gas hydrates, vol 2, Yokohama, Japan, 19–23 May 2002. p. 963–67.
    4.Oyama H, Shingo T. Air-conditioning system using clathrate hydrate slurry. JFE Tech Rep. 2004;3:1–5.
    5.Darbouret M, Cournil M, Herri Rheo JM. Logical study of TBAB hydrate slurries as secondary two-phase refrigerants. Int J Refrig. 2005;28:663–71.CrossRef
    6.Deschamps J, Dalmazzone D. Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2 + CO2 and CH4 + CO2. J Therm Anal Calorim. 2009;98:113–8.CrossRef
    7.Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, Nagao J, Narita H. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate. Jpn J Appl Phys. 2004;43:362–5.CrossRef
    8.Veluswamy HP, Chin WI, Linga P. Clathrate hydrates for hydrogen storage: the impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. Int J Hydrog Energy. 2014;39:16234–43.CrossRef
    9.Shunsuke H, Shu M, Takeshi S, Sato H, Ohgaki K. Thermodynamic and raman spectroscopic studies on H2 + tetrahydrofuran + water and H2 + tetra-n-butylammonium bromide + water mixtures containing gas hydrates. Chem Eng Sci. 2006;61:7884–8.CrossRef
    10.Chapoy A, Anderson R, Tohidi B. Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. J Am Chem Soc. 2007;129:746–7.CrossRef
    11.Li G, Liu D, Xie Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC. J Therm Anal Calorim. 2010;102:819–26.CrossRef
    12.Zhang P, Ma Z, Shi X, Xiao X. Thermal conductivity measurements of a phase change material slurry under the influence of phase change. Int J Therm Sci. 2014;78:56–64.CrossRef
    13.Liu H, Wang J, Chen G. High-efficiency separation of a CO2/H2 mixture via hydrate formation in W/O emulsions in the presence of cyclopentane and TBAB. Int J Hydrog Energy. 2014;39:7910–8.CrossRef
    14.Lin W, Dalmazzone D, Fuerst W. Thermodynamic properties of semiclathrate hydrates formed from the TBAB plus TBPB plus water and CO2 + TBAB + TBPB plus water systems. Fluid Phase Equilib. 2014;372:63–8.CrossRef
    15.Veluswamy HP, Kumar R, Linga P. Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl Energy. 2014;122:112–32.CrossRef
    16.He S, Liang D, Li D, Ma L. Static formation and dissociation of methane + methylcyclohexane hydrate for gas hydrate production and regasification. Chem Eng Technol. 2011;34:1228–34.CrossRef
    17.Ross RG, Andersson P, Backstrom G. Unusual pt dependence of thermal conductivity for a clathrate hydrate. Nature. 1981;290:322–3.CrossRef
    18.Ross RG, Andersson P. Clathrate and other solid phases in the tetrahydrofuran-water system: thermal conductivity and heat capacity under pressure. Can J Chem. 1982;60:881–92.CrossRef
    19.Waite WF, Gilbert LY, Winters WJ, Mason DH. Thermal property measurements in tetrahydrofuran (THF) hydrate and hydrate-bearing sediment between −25° and +4°, and their application to methane hydrate. In: Proceedings of fifth international conference on gas hydrates, Trondheim, Norway, 13–16 June 2005. Paper 5042.
    20.Rosenbaum EJ, English NJ, Johnson JK, Warzinski RP. Thermal conductivity of methane hydrate from experiment and molecular simulation. J Phys Chem B. 2007;111:13194–205.CrossRef
    21.Hayashi K, Takao S, Ogoshi H, Matsumoto S. Research and development on high-density cold latent-heat medium transportation technology. In: IEA annex 10, phase change materials and chemical reactions for thermal energy storage, the fifth workshop, Tsu, Japan, 2000, p. 1–9.
    22.Krivchikov AI, Gorodilov BY, Korolyuk OA, Manzhelii VG, Conrad H, Press W. Thermal conductivity of methane-hydrate. J Low Temp Phys. 2005;139:639–702.CrossRef
    23.Tse JS, White MA. Origin of glassy crystalline behavior in the thermal-properties of clathrate hydrates—a thermal conductivity study of tetrahydrofuran hydrate. J Phys Chem. 1988;92:5006–11.CrossRef
    24.Dharma-Wardana MWC. Thermal conductivity of the ice polymorphs and the ice clathrates. J Phys Chem. 1983;87:4185–90.CrossRef
    25.English NJ, Tse JS. Mechanisms for thermal conduction in methane hydrate. Phys Rev Lett. 2009. doi:10.​1103/​PhysRevLett.​103.​015901 .
    26.Huo H, et al. Mechanical and thermal properties of methane clathrate hydrates as an alternative energy resource. J Renew Sustain Energy. 2011. doi:10.​1063/​1.​3670410 .
    27.English NJ, Tse JS. Guest and host contributions towards thermal conduction in various polymorphs of methane hydrate. Comput Mater Sci. 2010;49:S176–80.CrossRef
    28.Tse JS. Thermal expansion of structure-H clathrate hydrates. J Incl Phenom Mol Recognit Chem. 1990;8:25–32.CrossRef
    29.Wang L, Chen G, Pratt RM, Guo T. Molecule dynamics simulations of thermal conductivities of structure H hydrate. Chem Ind Eng. 2001;52:354–6.
    30.Andersson P, Ross RG. Effect of guest molecule size on the thermal conductivity and heat capacity of clathrate hydrates. J Phys C Solid State Phys. 1983;16:1423–32.CrossRef
    31.Huang D, Fan S. Thermal conductivity of methane hydrate formed from sodium dodecyl sulfate solution. J Chem Eng Data. 2004;49:1479–82.CrossRef
    32.Ohno H, Kida M, Sakurai T, Iizuka Y, Hondoh T, Narita H, Nagao J. Symmetric stretching vibration of CH4 in clathrate hydrate structures. ChemPhysChem. 2010;11:3070–3.CrossRef
    33.Stoll RD, Bryan GM. Physical properties of sediments containing gas hydrates. J Geophys Res. 1979;84:1629–34.CrossRef
    34.Cook JG, Leaist DG. An exploratory study of the thermal conductivity of methane hydrate. Geophys Res Lett. 1983;10:397–9.CrossRef
    35.Waite WF, Pinkston JP, Kirby SH. Preliminary laboratory thermal conductivity measurements in pure methane hydrate and methane hydrate- sediment mixtures: a progress report. In: Proceedings of the 4th international conference on gas hydrates, Yokohama Japan, 19–23 May 2002. Vol 2, p. 728–33.
    36.Waite WF, Stern LA, Kirby SH, Winters WJ, Mason DH. Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys J Int. 2007;169:767–74.CrossRef
    37.Handa YP, Cook JG. Thermal conductivity of xenon hydrate. J Phys Chem. 1987;91:6327–8.CrossRef
    38.Krivchikov AI, Gorodilov BY, Korolyuk OA, Manzhelii VG, Romantsova OO, Conrad H, Press W, Tse JS, Klug DD. Thermal conductivity of Xe clathrate hydrate at low temperatures. Phys Rev B. 2006. doi:10.​1103/​PhysRevB.​73.​064203 .
    39.Andersson O, Suga H. Thermal conductivity of normal and deuterated tetrahydrofuran clathrate hydrates. J Phys Chem Solids. 1996;57:125–32.CrossRef
    40.Huang D, Fan S. Measuring and modeling thermal conductivity of gas hydrate-bearing sand. J Geophys Res. 2005. doi:10.​1029/​2004JB003314 .
    41.Shi L. Experimental investigation of thermal conductivity of clathrate hydrate. M.S. dissertation. Guangzhou Institute of Energy Conversion, CAS. China; 2002.
    42.Jiang H, Myshakin EM, Jordan KD, Warzinski RP. Molecular dynamics simulations of the thermal conductivity of methane hydrate. J Phys Chem B. 2008;112:10207–16.CrossRef
    43.Wan L, Liang D, Wu N, Guan J. Molecular dynamics simulations of the mechanisms of thermal conduction in methane hydrates. Sci China Chem. 2012;55:167–74.CrossRef
    44.English NJ, MacElroy JMD. Perspectives on molecular simulation of clathrate hydrates: progress, prospects and challenges. Chem Eng Sci. 2015;121:133–56.CrossRef
  • 作者单位:Dongliang Li (1)
    Deqing Liang (1)
    Hao Peng (1)
    Lihua Wan (1)

    1. Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, CAS, No. 2, Nengyuan Rd, Wushan, Tianhe District, Guangzhou, 510640, Guangdong, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Thermal conductivities of structure H (sH) methane–methylcyclohexane hydrate and type A tetrabutylammonium bromide (TBAB) clathrate hydrate were measured using a single-sided transient plane source technique. The thermal conductivity of sH hydrate exhibited a positive trend with temperature and the average thermal conductivity was found to be 0.44 W m−1 K−1 at a compaction pressure of 12 MPa. The thermal conductivity of sH hydrate was lower than those of structure I and structure II hydrates at the same temperature and was found to depend not only on guest–host interactions but also on the rigidity of the framework. Unlike sH hydrates, the thermal conductivity of type A TBAB hydrates exhibited a negative trend with temperature. One possible reason for this strange phenomenon could be that the TBAB hydrate has a semi-clathrate structure, which retains the crystal heat transmission characteristics. The structures of the hydrates studied were different from those of normal gas hydrates. In addition, the thermal conductivity values for TBAB hydrates were also affected by interactions between the cations and anions. Keywords Thermal conductivity Hydrate structure Methylcyclohexane Tetrabutylammonium bromide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700