用户名: 密码: 验证码:
Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy
详细信息    查看全文
  • 作者:Gabriella Josefsson (1)
    Bj?rn S. Tanem (2)
    Yanjun Li (2)
    Per E. Vullum (2)
    E. Kristofer Gamstedt (1)
  • 关键词:Nanofibrillated cellulose ; Elastic properties ; Micromechanics ; Modelling ; Transmission electron microscopy
  • 刊名:Cellulose
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:20
  • 期:2
  • 页码:761-770
  • 全文大小:428KB
  • 参考文献:1. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15?nm from wood. Biomacromolecules 8(10):3276-278. doi:10.1021/bm700624p CrossRef
    2. Almgren KM, Gamstedt EK, Nyg?rd P, Malmberg F, Lindblad J, Lindstr?m M (2009) Role of fibre–fibre and fibre–matrix adhesion in stress transfer in composites made from resin-impregnated paper sheets. Int J Adhes Adhes 29(5):551-57 CrossRef
    3. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283-85. doi:10.1126/science.223.4633.283 CrossRef
    4. Beck-Candanedo S, Roman M, Gray GD (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048-054. doi:10.1021/bm049300p CrossRef
    5. Benveniste Y (1987) A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech Mater 6(2):147-57. doi:10.1016/0167-6636(87)90005-6 CrossRef
    6. Br?ndstr?m J (2002) Morphology of Norway spruce tracheids with emphasis on cell wall organization. Doctoral Thesis, SLU
    7. Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer 45(3):1063-071. doi:10.1016/j.polymer.2003.11.020 CrossRef
    8. Cheng Q, Wang S (2008) A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Compos A Appl Sci Manuf 39(12):1838-843. doi:10.1016/j.compositesa.2008.09.007 CrossRef
    9. Cheng Q, Wang S, Harper DP (2009) Effects of process and source on elastic modulus of single cellulose fibrils evaluated by atomic force microscopy. Compos A Appl Sci Manuf 40(5):583-88. doi:10.1016/j.compositesa.2009.02.011 CrossRef
    10. Chou T-W, Nomura S, Taya M (1980) A self-consistent approach to the elastic stiffness of short-fiber composites. J Compos Mater 14(3):178-88. doi:10.1177/002199838001400301 CrossRef
    11. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291-07. doi:10.1007/s10570-006-9046-3 CrossRef
    12. Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197-07. doi:10.1023/a:1013181804540 CrossRef
    13. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57-5. doi:10.1021/bm700769p CrossRef
    14. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241(1226):376-96. doi:10.1098/rspa.1957.0133 CrossRef
    15. Esteban LG, de Palacios P, Fernández Francisco G, Guindeo A, Conde M, Baonza V (2008) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103?years of submersion. Holzforschung 62(6):745-51. doi:10.1515/hf.2008.106 CrossRef
    16. Gamstedt EK, Sandell R, Berthold F, Pettersson T, Nordgren N (2011) Characterization of interfacial stress transfer ability of particulate cellulose composite materials. Mech Mater 43(11):693-04. doi:10.1016/j.mechmat.2011.06.015 CrossRef
    17. Gindl W, Gupta HS, Sch?berl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A Mater Sci Process 79(8):2069-073. doi:10.1007/s00339-004-2864-y
    18. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642-646. doi:10.1021/la0504311 CrossRef
    19. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106(4):2817-824. doi:10.1002/app.26946 CrossRef
    20. Henriksson M, Berglund LA, Isaksson P, Lindstr?m T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579-585. doi:10.1021/bm800038n CrossRef
    21. Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61(4):343-51. doi:10.1515/hf.2007.058 CrossRef
    22. Hsieh YC, Yano H, Nogi M, Eichhorn S (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507-13. doi:10.1007/s10570-008-9206-8 CrossRef
    23. Ioelovich M (2008) Cellulose as a nanostructured polymer: a short review. BioResources 3(4):1403-418
    24. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461-66. doi:10.1007/s00339-007-4175-6 CrossRef
    25. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571-576. doi:10.1021/bm900520n CrossRef
    26. Karabulut E, Wagberg L (2011) Design and characterization of cellulose nanofibril-based freestanding films prepared by layer-by-layer deposition technique. Soft Matter 7(7):3467-474 CrossRef
    27. Laws N, McLaughlin R (1979) The effect of fibre length on the overall moduli of composite materials. J Mech Phys Solids 27(1):1-3. doi:10.1016/0022-5096(79)90007-3 CrossRef
    28. Lepp?nen K, Pirkkalainen K, Penttil? P, Siev?nen J, Kotelnikova N, Serimaa R (2010) Small-angle x-ray scattering study on the structure of microcrystalline and nanofibrillated cellulose. J Phys: Conf Ser 247:012030 CrossRef
    29. Lin SC, Mura T (1973) Elastic fields of inclusions in anisotropic media (II). Physica Status Solidi (a) 15(1):281-85. doi:10.1002/pssa.2210150131 CrossRef
    30. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266-275. doi:10.1021/ma00215a012 CrossRef
    31. Montès H, Mazeau K, Cavaillé JY (1997) Secondary mechanical relaxations in amorphous cellulose. Macromolecules 30(22):6977-984. doi:10.1021/ma9611329 CrossRef
    32. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571-74. doi:10.1016/0001-6160(73)90064-3 CrossRef
    33. Murdock CC (1930) The form of the X-Ray diffraction bands for regular crystals of colloidal size. Phys Rev 35(1):8-3 CrossRef
    34. Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70(12):1704-712 CrossRef
    35. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074-082. doi:10.1021/ja0257319 CrossRef
    36. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300-4306. doi:10.1021/ja037055w CrossRef
    37. Page DH, Seth RS (1980) The elastic modulus of paper II. The importance of fiber modulus, bonding and fiber length. Tappi 63(6):113-16
    38. Page DH, El-Hosseiny F, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. Tappi 60(4):114-17
    39. Persson K (2000) Micromechanical modelling of wood and fibre properties. Doctoral Thesis, Lund University
    40. Peura M, Müller M, Vainio U, Sarén M-P, Saranp?? P, Serimaa R (2008) X-ray microdiffraction reveals the orientation of cellulose microfibrils and the size of cellulose crystallites in single Norway spruce tracheids. Trees Struct Funct 22(1):49-1. doi:10.1007/s00468-007-0168-5 CrossRef
    41. Qiu YP, Weng GJ (1990) On the application of Mori-Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int J Eng Sci 28(11):1121-137. doi:10.1016/0020-7225(90)90112-v CrossRef
    42. Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111 CrossRef
    43. Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651-60. doi:10.1002/pol.1962.1205716551 CrossRef
    44. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786-94. doi:10.1177/004051755902901003 CrossRef
    45. Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos Sci Technol 71(3):382-87. doi:10.1016/j.compscitech.2010.12.007 CrossRef
    46. Sehaqui H, Zhou Q, Berglund LA (2011b) Nanostructured biocomposites of high toughness-a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7(16):7342-350 CrossRef
    47. ?turcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055-061. doi:10.1021/bm049291k CrossRef
    48. Sugiyama J, Okano T, Yamamoto H, Horii F (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23(12):3196-198. doi:10.1021/ma00214a029 CrossRef
    49. Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstr?m T, Sampson WW, Eichhorn SJ (2012) Effective Young’s modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340-349. doi:10.1021/bm300042t CrossRef
    50. Tsai SW (1992) Theory of composites design. Think Composites, Dayton, OH
    51. Tze WTY, Wang S, Rials TG, Pharr GM, Kelley SS (2007) Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos A Appl Sci Manuf 38(3):945-53. doi:10.1016/j.compositesa.2006.06.018 CrossRef
    52. Utsel S, Malmstr?m EE, Carlmark A, W?gberg L (2010) Thermoresponsive nanocomposites from multilayers of nanofibrillated cellulose and specially designed N-isopropylacrylamide based polymers. Soft Matter 6(2):342-52 CrossRef
    53. Wada M, Okano T, Sugiyama J, Horii F (1995) Characterization of tension and normally lignified wood cellulose in? / Populus maximowiczii. Cellulose 2(4):223-33. doi:10.1007/bf00811814 CrossRef
    54. Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial? / d-spacings. J Wood Sci 47(2):124-28. doi:10.1007/bf00780560 CrossRef
    55. Wickholm K (2001) Structural elements in native celluloses. Doctoral Thesis, KTH Royal Institute of Technology
    56. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123-29. doi:10.1016/s0008-6215(98)00236-5 CrossRef
    57. Zhu Y, Ren X, Wu C (2004) Influence of alkali treatment on the structure of newcell fibers. J Appl Polym Sci 93(4):1731-735. doi:10.1002/app.20648 CrossRef
  • 作者单位:Gabriella Josefsson (1)
    Bj?rn S. Tanem (2)
    Yanjun Li (2)
    Per E. Vullum (2)
    E. Kristofer Gamstedt (1)

    1. The ?ngstr?m Laboratory, Division of Applied Mechanics, Uppsala University, Box 534, SE-751 21, Uppsala, Sweden
    2. SINTEF Materials and Chemistry, H?gskoleringen 5, 7465, Trondheim, Norway
  • ISSN:1572-882X
文摘
Cellulose-based materials have a great potential in terms of mechanical performance, since crystalline cellulose is known to have excellent stiffness along the main axis. This potential is not completely fulfilled in structural wood materials and in composite materials, due to structural inhomogeneities, misalignment, voids etc. on several length scales. This study investigates the difference in stiffness of nanofibrillated cellulose (NFC) compared to that of cellulose crystallites, based on nanostructural characterization, image analysis and micromechanical modeling. Nanofibrillated cellulose is believed to be composed of a distribution of crystallites in an amorphous matrix, and it is assumed to represent the distribution of the crystalline allomorph Iβ. To predict the elastic properties of NFC, a micromechanical model based on a Mori–Tanaka approach and self-consistent scheme was used. The input data, i.e. orientation distribution, aspect ratio and volume fraction of these crystalline regions, were estimated from image analysis of transmission electron micrographs. The model predicts a ca. 56?% loss of stiffness of NFC compared to that of cellulose crystals along the main axis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700