Non-isothermal crystallization kinetics of sucrose palmitate reinforced poly(lactic acid) bionanocomposites
详细信息    查看全文
  • 作者:Ravibabu Valapa ; Sameer Hussain ; Parmeswar Krishnan Iyer…
  • 关键词:Sucrose palmitate ; Poly(lactic acid) ; Differential scanning calorimetry ; Non ; isothermal crystallization kinetics ; Avrami model ; Polarized optical microscopy
  • 刊名:Polymer Bulletin
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:73
  • 期:1
  • 页码:21-38
  • 全文大小:3,905 KB
  • 参考文献:1.Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 36:576–602CrossRef
    2.Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future—a technical and an environmental review. Chem Rev 112:2082–2099CrossRef
    3.Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091–3101CrossRef
    4.Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846CrossRef
    5.Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796CrossRef
    6.Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef
    7.Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRef
    8.Bhardwaj R, Mohanty A (2007) Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8:2476–2484CrossRef
    9.Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l -lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411CrossRef
    10.Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l -lactide) nucleated using layered metal phosphonates. Polym Int 60:284–297CrossRef
    11.Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l -lactide). J Phys Chem B 112:16461–16468CrossRef
    12.Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(l -lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50:12579–12586CrossRef
    13.Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modelling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42:3171–3182CrossRef
    14.Liu Y, Wang L, He Y, Fan Z, Lia S (2010) Non-isothermal crystallization kinetics of poly(l -lactide). Polym Int 59:1616–1621CrossRef
    15.Park SH, Lee SG, Kim SH (2013) Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos A 46:11–18CrossRef
    16.Laredoa E, Grimaub M, Belloa A, Wuc D (2013) Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. Eur Polym J 49:4008–4019CrossRef
    17.Wu JH, Yen MS, Kuo MC, Chen BH (2013) Physical properties and crystallization behavior of silica particulates reinforced poly(lactic acid) composites. Mater Chem Phys 142:726–733CrossRef
    18.Qian Y, Wei P, Jiang P, Li Z, Yan Y, Ji K (2013) Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol 82:1–7CrossRef
    19.Gerds N, Katiyar V, Koch CB, Risbo J, Plackett D, Hansen HCB (2012) Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation. Appl Clay Sci 65:143–151CrossRef
    20.Ashabi L, Jafari SH, Khonakdar HA, Haussler L, Wagenknecht U, Heinrich G (2013) Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta 565:102–113CrossRef
    21.Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036CrossRef
    22.Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRef
    23.Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRef
    24.Zhang JF, Sun X (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451CrossRef
    25.Valapa R, Pugazhenthi G, Katiyar V (2015) Fabrication and characterization of sucrose palmitate reinforced poly(lactic acid) bionanocomposite films. J Appl Polym Sci 132:41320–41330CrossRef
    26.Valapa R, Pugazhenthi G, Katiyar V (2014) Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites. Int J Biol Macromol 65:275–283CrossRef
    27.Huda MS, Drzal LY, Misra M (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44:5593–5601CrossRef
    28.Peng F, Shaw MT, Olson JR, Wei M (2011) Hydroxyapatite needle-shaped particles/poly(l -lactic acid) electrospun scaffolds with perfect particle-along-nanofiber orientation and significantly enhanced mechanical properties. J Phys Chem C 115:15743–15751CrossRef
    29.Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly(lactic acid) and nisaplin in the presence of plasticizers. J Agric Food Chem 57:8392–8398CrossRef
    30.Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) Poly l -lactide-layered double hydroxide nanocomposites via in situ polymerization of l -lactide. Polym Degrad Stab 95:2563–2573CrossRef
    31.Sawai D, Takahashi K, Sasashige A, Kanamoto T, Hyon SH (2003) Preparation of oriented β-form poly(l -lactic acid) by solid-state co-extrusion: effect of extrusion variables. Macromolecules 36:3601–3605CrossRef
    32.Hoogsteen W, Postema AR, Pennings AJ, Brinke GT (1990) Crystal structure, conformation and morphology of solution-spun poly(l -lactide) fibers. Macromolecules 23:634–642CrossRef
    33.Bharadwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRef
    34.Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59:12384–12395CrossRef
    35.Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l -lactide): effect of l -lactide dimer. Polym Bull 70:2569–2586CrossRef
    36.Yasuniwa M, Sakamo K, Ono Y, Kawahara W (2008) Melting behavior of poly(l -lactic acid): X-ray and DSC analyses of the melting process. Polymer 49:1943–1951CrossRef
    37.Kong Y, Hay JN (2003) Multiple melting behaviour of poly(ethylene terephthalate). Polymer 44:623–633CrossRef
    38.Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655CrossRef
    39.Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 7:2027–2036CrossRef
    40.Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain
    anched polylactide. Ind Eng Chem Res 50:13789–13798CrossRef
    41.Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l -lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRef
    42.Vasanthan N, Ly H, Ghosh S (2011) Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l -lactic acid) nanocomposites. J Phys Chem B 115:9556–9563CrossRef
    43.Wang L, Jing X, Cheng H, Hu X, Yang L, Huang Y (2012) Blends of linear and long-chain branched poly(l -lactide)s with high melt strength and fast crystallization rate. Ind Eng Chem Res 51:10088–10099CrossRef
    44.Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef
    45.Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(l -lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303CrossRef
    46.Yi L, Han C (2012) Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(l -lactide)/poly(d -lactide) blends. Ind Eng Chem Res 51:15927–15935CrossRef
    47.Zhang R, Zheng H, Lou X, Ma D (1994) Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci 51:51–56CrossRef
    48.Wu M, Yang G, Wang M, Wang W, Zhang W, Feng J, Liu T (2008) Nonisothermal crystallization kinetics of zno nanorod filled polyamide 11 composites. Mater Chem Phys 109:547–555CrossRef
    49.Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l -lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRef
    50.Bao RY, Yang W, Jiang WR, Liu ZY, Xie BH, Yang MB (2013) Polymorphism of racemic poly(l -lactide)/poly(d -lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674CrossRef
    51.Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRef
    52.Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C (2013) Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. doi:10.​1177/​0021998313502064​
    53. Maiti SN, Hemalatha (2012) Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA Blends. J Polym Res 19:9926–9942
    54.Li DC, Liu T, Zhao L, Lian XS, Yuan WK (2011) Foaming of poly(lactic acid) based on its nonisothermal crystallization behavior under compressed carbon dioxide. Ind Eng Chem Res 50:1997–2007CrossRef
    55.Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon Nanotubes of Different Aspect Ratios. ACS Appl Mater Interfaces 3:3744–3753CrossRef
  • 作者单位:Ravibabu Valapa (1)
    Sameer Hussain (2)
    Parmeswar Krishnan Iyer (2)
    G. Pugazhenthi (1)
    Vimal Katiyar (1)

    1. Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
    2. Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Characterization and Evaluation Materials
    Soft Matter and Complex Fluids
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-2449
文摘
Poly(lactic acid) (PLA) bionanocomposites containing sucrose palmitate (SP), which is a non-toxic food additive, were prepared by a simple solution-casting approach. In the current work, the investigation of non-isothermal cold crystallization kinetics of PLA and PLA–SP bionanocomposites was performed using a differential scanning calorimeter under the dynamic heating regime of 2.5, 5, 7.5 and 10 °C/min. Avrami model was employed to study the effect of SP on cold crystallization kinetics of PLA. For PLA–SP bionanocomposites, Avrami coefficients obtained in the range of ~2.5–4 and decreasing trend of the t 1/2 values indicated the faster crystallization mechanism in comparison to neat PLA. The nucleation and growth mechanism involved in the non-isothermal crystallization of PLA and PLA–SP bionanocomposites were further analyzed by Tobin model. Kissinger method has been employed to determine the crystallization activation energy (ΔE) for neat PLA and PLA–SP bionanocomposite. The nucleation as well as the growth of spherulites in neat PLA and PLA–SP bionanocomposites was observed using polarized optical microscopy. After incorporation of SP in the PLA matrix, an increase in the overall crystallization rate for PLA was reflected by the decline in the nucleation induction period and subsequent enhancement in the primary nucleation sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700