Phenolic resin-derived activated carbon-supported divalent metal as efficient adsorbents (M–C, M=Zn, Ni, or Cu) for dibenzothiophene removal
详细信息    查看全文
  • 作者:Chi He ; Gaoshan Men ; Bitao Xu ; Jin Cui
  • 关键词:Dibenzothiophene ; Adsorption ; Activated carbon ; Metal sites ; Phenolic resin
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:1
  • 页码:782-794
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water M
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-7499
  • 卷排序:24
文摘
The adsorption process and mechanism of dibenzothiophene (DBT) over metal-loaded phenolic resin-derived activated carbon (PR-AC) were firstly reported in this work. The metal component (Zn, Ni, or Cu) was respectively introduced to PR-AC support via an impregnation method. The effects of adsorbent component, initial DBT concentration, liquid hourly space velocity (LHSV), adsorption time, and adsorption temperature on the adsorption capacity of the adsorbents were systematically investigated. Furthermore, the adsorption mechanism was discussed by analyzing the properties of adsorption product and saturated adsorbent as well as adsorption kinetics. Experimental results indicate that the PR-AC-loaded metal adsorbents, especially with Zn, present much higher DBT adsorption capability than that of pure PR-AC support. The DBT removal rate over PR-AC-loaded Zn (Zn2+ = 0.2 mol L−1) reaches 89.14 %, which is almost twice higher than that of pure PR-AC (45.6 %). This is due to the π-complexation between DBT and metal ions (dominating factor) and the weakening of the local hard acid sites over PR-AC. The multi-factor orthogonal experiment shows that the DBT removal rate over PR-AC-loaded Zn sample achieved 92.36 % in optimum conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700