Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model
详细信息    查看全文
  • 作者:Xiaohua Xu (1)
    Xiaoquan Rao (2)
    Tse-Yao Wang (2)
    Silis Y Jiang (2)
    Zhekang Ying (1)
    Cuiqing Liu (1) (3)
    Aixia Wang (1)
    Mianhua Zhong (4)
    Jeffrey A Deiuliis (1)
    Andrei Maiseyeu (1)
    Sanjay Rajagopalan (1) (5)
    Morton Lippmann (4)
    Lung-Chi Chen (4)
    Qinghua Sun (1) (2) (5)
  • 关键词:Nickel ; Inflammation ; Insulin resistance ; Air pollution
  • 刊名:Particle and Fibre Toxicology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:9
  • 期:1
  • 全文大小:609KB
  • 参考文献:1. Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC: Cardiovascular effects of nickel in ambient air. / Environ Health Perspect 2006, 114:1662-669.
    2. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC Jr, Tager I: Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. / Circulation 2004, 109:2655-671. CrossRef
    3. Huang Y, Davidson G, Li J, Yan Y, Chen F, Costa M, Chen LC, Huang C: Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds. / Environ Health Perspect 2002,110(Suppl 5):835-39. CrossRef
    4. Brant KA, Fabisiak JP: Nickel and the microbial toxin, MALP-2, stimulate proangiogenic mediators from human lung fibroblasts via a HIF-1alpha and COX-2-mediated pathway. / Toxicol Sci 2009, 107:227-37. CrossRef
    5. Grimsrud TK, Berge SR, Haldorsen T, Andersen A: Exposure to different forms of nickel and risk of lung cancer. / Am J Epidemiol 2002, 156:1123-132. CrossRef
    6. Langard S: Nickel-related cancer in welders. / Sci Total Environ 1994, 148:303-09. CrossRef
    7. Grimsrud TK, Peto J: Persisting risk of nickel related lung cancer and nasal cancer among Clydach refiners. / Occup Environ Med 2006, 63:365-66. CrossRef
    8. Laden F, Neas LM, Dockery DW, Schwartz J: Association of fine particulate matter from different sources with daily mortality in six U.S. cities. / Environ Health Perspect 2000, 108:941-47. CrossRef
    9. Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, Mikolaj MB, Cai Y, Ostrowski MC, Lu B, Parthasarathy S, Brook RD, Moffatt-Bruce SD, Chen LC, Rajagopalan S: Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. / Circulation 2009, 119:538-46. CrossRef
    10. Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, Aguinaldo JG, Fayad ZA, Fuster V, Lippmann M, Chen LC, Rajagopalan S: Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. / JAMA 2005, 294:3003-010. CrossRef
    11. Kampfrath T, Maiseyeu A, Ying Z, Shah Z, Deiuliis JA, Xu X, Kherada N, Brook RD, Reddy KM, Padture NP, Parthasarathy S, Chen LC, Moffatt-Bruce S, Sun Q, Morawietz H, Rajagopalan S: Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. / Circ Res 2011, 108:716-26. CrossRef
    12. Xu X, Liu C, Xu Z, Tzan K, Zhong M, Wang A, Lippmann M, Chen LC, Rajagopalan S, Sun Q: Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. / Toxicol Sci 2011, 124:88-8. CrossRef
    13. Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, Wang A, Zhong M, Lippmann M, Chen LC, Rajagopalan S, Sun Q: Effect of early particulate air pollution exposure on obesity in mice: role of p47phox. / Arterioscler Thromb Vasc Biol 2010, 30:2518-527. CrossRef
    14. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, Bramble LA, Yang Y, Wang A, Harkema JR, Lippmann M, Rajagopalan S, Chen LC, Sun Q: Ambient Particulate Air Pollution Induces Oxidative Stress and Alterations of Mitochondria and Gene Expression in Brown and White Adipose Tissues. / Part Fibre Toxicol 2011, 8:20. CrossRef
    15. Maciejczyk P, Zhong M, Li Q, Xiong J, Nadziejko C, Chen LC: Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. II. The design of a CAPs exposure system for biometric telemetry monitoring. / Inhal Toxicol 2005, 17:189-97. CrossRef
    16. Peltier RE, Lippmann M: Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. / J Expo Sci Environ Epidemiol 2010, 20:342-50. CrossRef
    17. Xu X, Wan W, Powers AS, Li J, Ji LL, Lao S, Wilson B, Erikson JM, Zhang JQ: Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. / J Mol Cell Cardiol 2008, 44:114-22. CrossRef
    18. Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, Tzan K, Wang A, Parthasarathy S, He G, Rajagopalan S, Sun Q: Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. / Am J Physiol Regul Integr Comp Physiol 2011, 300:R1115-R1125. CrossRef
    19. Chen LC, Hwang JS: Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. IV. Characterization of acute and chronic effects of ambient air fine particulate matter exposures on heart-rate variability. / Inhal Toxicol 2005, 17:209-16. CrossRef
    20. Hwang JS, Nadziejko C, Chen LC: Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. III. Acute and chronic effects of CAPs on heart rate, heart-rate fluctuation, and body temperature. / Inhal Toxicol 2005, 17:199-07. CrossRef
    21. Sun Q, Yue P, Ying Z, Cardounel AJ, Brook RD, Devlin R, Hwang JS, Zweier JL, Chen LC, Rajagopalan S: Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. / Arterioscler Thromb Vasc Biol 2008, 28:1760-766. CrossRef
    22. Ying Z, Yue P, Xu X, Zhong M, Sun Q, Mikolaj M, Wang A, Brook RD, Chen LC, Rajagopalan S: Air pollution and cardiac remodeling: a role for RhoA/Rho-kinase. / Am J Physiol Heart Circ Physiol 2009, 296:H1540-H1550. CrossRef
    23. Dreher KL, Jaskot RH, Lehmann JR, Richards JH, McGee JK, Ghio AJ, Costa DL: Soluble transition metals mediate residual oil fly ash induced acute lung injury. / J Toxicol Environ Health 1997, 50:285-05. CrossRef
    24. Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, Costa DL: Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. / Environ Res 1997, 72:162-72. CrossRef
    25. Hamann A, Flier JS, Lowell BB: Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. / Endocrinology 1996, 137:21-9. CrossRef
    26. Ricquier D: Respiration uncoupling and metabolism in the control of energy expenditure. / Proc Nutr Soc 2005, 64:47-2. CrossRef
    27. Silva JE, Larsen PR: Adrenergic activation of triiodothyronine production in brown adipose tissue. / Nature 1983, 305:712-13. CrossRef
    28. Lin J, Handschin C, Spiegelman BM: Metabolic control through the PGC-1 family of transcription coactivators. / Cell Metab 2005, 1:361-70. CrossRef
    29. Handschin C, Spiegelman BM: Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. / Endocr Rev 2006, 27:728-35.
    30. Xu MJ, Song P, Shirwany N, Liang B, Xing J, Viollet B, Wang X, Zhu Y, Zou MH: Impaired expression of uncoupling protein 2 causes defective postischemic angiogenesis in mice deficient in AMP-activated protein kinase alpha subunits. / Arterioscler Thromb Vasc Biol 2011, 31:1757-765. CrossRef
    31. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. / Nature 2009, 458:1056-060. CrossRef
    32. Yuan H, Shyy JY, Martins-Green M: Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1. / J Hepatol 2009, 51:535-47. CrossRef
    33. Chaudhari PR, Gupta R, Gajghate DG, Wate SR: Heavy metal pollution of ambient air in Nagpur City. / Environ Monit Assess 2011.
    34. Hernandez-Mena L, Murillo-Tovar M, Ramirez-Muniz M, Colunga-Urbina E, de la Garza-Rodriguez I, Saldarriaga-Norena H: Enrichment factor and profiles of elemental composition of PM 2.5 in the city of Guadalajara, Mexico. / Bull Environ Contam Toxicol 2011, 87:545-49. CrossRef
  • 作者单位:Xiaohua Xu (1)
    Xiaoquan Rao (2)
    Tse-Yao Wang (2)
    Silis Y Jiang (2)
    Zhekang Ying (1)
    Cuiqing Liu (1) (3)
    Aixia Wang (1)
    Mianhua Zhong (4)
    Jeffrey A Deiuliis (1)
    Andrei Maiseyeu (1)
    Sanjay Rajagopalan (1) (5)
    Morton Lippmann (4)
    Lung-Chi Chen (4)
    Qinghua Sun (1) (2) (5)

    1. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
    2. Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
    3. Department of Physiology, Hangzhou Normal University, Hangzhou, China
    4. Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
    5. Division of Cardiology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
文摘
Background It has been well recognized that toxicity of fine ambient air particulate matter (PM2.5) may depend on its chemical constituents, including components such as soluble metals that may theoretically exert distinctive effects. We have recently demonstrated an important effect of PM2.5 on metabolic function. Since transition metals, such as nickel (Ni), represent an important component of exposure in certain environments, and may significantly influence the toxicity of inhalational exposure, we investigated the effects of Ni as a variable component of ambient PM2.5 exposure. Methods Male ApoE knockout mice were exposed to filtered air (FA), fine-sized nickel sulfate particles alone (Ni) at 0.44 μg/m3, concentrated ambient air PM2.5 (CAPs) at a mean of 70 μg/m3, or CAPs+Ni in Tuxedo, NY, 6 hours/day, 5 days/week, for 3 months. Results Exposure to Ni, irrespective of co-exposure to CAPs, resulted in body weight gain, while exposure to CAPs+Ni significantly enhanced fasting glucose and worsened insulin resistance measures (HOMA-IR), when compared with exposure to CAPs alone. CAPs+Ni exposure induced a significant decrease in phosphorylation of AMP-activated protein kinase (AMPK) α. Exposure to Ni or CAPs+Ni significantly induced microcirculatory dysfunction and increased monocytic cell infiltration into lung and adipose, and decreased uncoupling protein 1 expression at gene and protein levels and several brown adipocyte-specific genes in adipose tissue. Conclusions Ni exposure has effects on metabolic and inflammatory parameters that are comparable to that of CAPs. Additionally, Ni synergistically exacerbates CAPs-induced adverse effects on some of, but not all of, these parameters, that may be mediated via the AMPK signaling pathway. These findings have important implications for inhaled transition metal toxicity that may exert synergistic effects with other PM2.5 components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700