Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli
详细信息    查看全文
  • 作者:Tianyi Jiang (1)
    Chao Gao (1)
    Peipei Dou (1) (2)
    Cuiqing Ma (1)
    Jian Kong (1)
    Ping Xu (1) (2)
  • 关键词:NAD ; independent l ; lactate dehydrogenase ; Site ; directed mutagenesis ; Optical resolution ; d ; mandelic acid
  • 刊名:Microbial Cell Factories
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:11
  • 期:1
  • 全文大小:431KB
  • 参考文献:1. Yamamoto K, Oishi K, Fujimatsu I, Komatsu K: Production of r-(?-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. / Appl Environ Microbiol 1991, 57:3028-032.
    2. Kaul P, Banerjee A, Mayilraj S, Banerjee UC: Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (r)-(?-mandelic acid by new bacterial isolates. / Tetrahedron-Asymmetry 2004, 15:207-11. CrossRef
    3. He Y, Xu J, Xu Y, Ouyang L, Pan J: Biocatalytic synthesis of (r)-(?-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp. ECU0401. / Chin Chem Lett 2007, 18:677-80. CrossRef
    4. Choi WJ, Lee KY, Kang SH, Lee SB: Biocatalytic enantioconvergent separation of racemic mandelic acid. / Sep Purif Technol 2007, 53:178-82. CrossRef
    5. Kim BY, Hwang KC, Song HS, Chung N, Bang WG: Optical resolution of rs-(+/?-mandelic acid by Pseudomonas sp. / Biotechnol Lett 2000, 22:1871-875. CrossRef
    6. Takahashi E, Nakamichi K, Furui M, Mori T: r-(?-mandelic acid production from racemic mandelic acids by Pseudomonas polycolor with asymmetric degrading activity. / J Ferment Bioeng 1995, 79:439-42. CrossRef
    7. Takahashi E, Nakamichi K, Furui M: r-(?-mandelic acid production from racemic mandelic acids using Pseudomonas polycolor IFO 3918 and Micrococcus freudenreichii FERM-P 13221. / J Ferment Bioeng 1995, 80:247-50. CrossRef
    8. Miyamoto K, Ohta H: Enantioselective oxidation of mandelic acid using a phenylmalonate metabolizing pathway of a soil bacterium Alcaligenes bronchisepticus KU 1201. / Biotechnol Lett 1992, 14:363-66. CrossRef
    9. He Y, Xu J, Pan J, Ouyang L, Xu Y: Preparation of (r)-(?-mandelic acid and its derivatives from racemates by enantioselective degradation with a newly isolated bacterial strain Alcaligenes sp. ECU0401. / Bioprocess Biosyst Eng 2008, 31:445-51. CrossRef
    10. Tsuchiya S, Miyamoto K, Ohta H: Highly efficient conversion of (±)-mandelic acid to its (r)-(?-enantiomer by combination of enzyme-mediated oxidation and reduction. / Biotechnol Lett 1992, 14:1137-142. CrossRef
    11. Gao C, Ma C, Xu P: Biotechnological routes based on lactic acid production from biomass. / Biotechnol Adv 2011, 29:930-39. CrossRef
    12. Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, Xu P: NAD-Independent l-lactate dehydrogenase is required for l-lactate utilization in Pseudomonas stutzeri SDM. / PLoS One 2012, 7:e36519. CrossRef
    13. Gao C, Qiu J, Li J, Ma C, Tang H, Xu P: Enantioselective oxidation of racemic lactic acid to d-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. / Bioresour Technol 2009, 100:1878-880. CrossRef
    14. Gao C, Zhang W, Ma C, Liu P, Xu P: Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent l-lactate dehydrogenase. / Bioresour Technol 2011, 102:4595-599. CrossRef
    15. Seah SY, Britton KL, Baker PJ, Rice DW, Asano Y, Engel PC: Alteration in relative activities of phenylalanine dehydrogenase towards different substrates by site-directed mutagenesis. / FEBS Lett 1995, 370:93-6. CrossRef
    16. Seah SY, Britton KL, Rice DW, Asano Y, Engel PC: Single amino acid substitution in bacillus sphaericus phenylalanine dehydrogenase dramatically increases its discrimination between phenylalanine and tyrosine substrates. / Biochemistry 2002, 41:11390-1397. CrossRef
    17. Paradisi F, Collins S, Maguire AR, Engel PC: Phenylalanine dehydrogenase mutants: efficient biocatalysts for synthesis of non-natural phenylalanine derivatives. / J Biotechnol 2007, 128:408-11. CrossRef
    18. Paradisi F, Conway PA, Maguire AR, Engel PC: Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the d-enantiomer from racemic mixtures. / Org Biomol Chem 2008, 6:3611-615. CrossRef
    19. Chen S, Engel PC: Efficient screening for new amino acid dehydrogenase activity: directed evolution of Bacillus sphaericus phenylalanine dehydrogenase towards activity with an unsaturated non-natural amino acid. / J Biotechnol 2009, 142:127-34. CrossRef
    20. Wilks HM, Halsall DJ, Atkinson T, Chia WN, Clarke AR, Holbrook JJ: Designs for a broad substrate specificity keto acid dehydrogenase. / Biochemistry 1990, 29:8587-591. CrossRef
    21. Sacchi S, Lorenzi S, Molla G, Pilone MS, Rossetti C, Pollegioni L: Engineering the substrate specificity of d-amino-acid oxidase. / J Biol Chem 2002, 277:27510-7516. CrossRef
    22. Black MT, White SA, Reid GA, Chapman SK: High-level expression of fully active yeast flavocytochrome b 2 in Escherichia coli . / Biochem J 1989, 258:255-59.
    23. Xia ZX, Mathews FS: Molecular structure of flavocytochrome b 2 at 2.4 ? resolution. / J Mol Biol 1990, 212:837-63. CrossRef
    24. Daff S, Manson FD, Reid GA, Chapman SK: Strategic manipulation of the substrate specificity of Saccharomyces cerevisiae flavocytochrome b 2 . / Biochem J 1994, 301:829-34.
    25. Sinclair R, Reid GA, Chapman SK: Re-design of Saccharomyces cerevisiae flavocytochrome b 2 : introduction of l-mandelate dehydrogenase activity. / Biochem J 1998, 333:117-20.
    26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. / Nucleic Acids Res 1997, 25:4876-882. CrossRef
    27. Gouet P, Courcelle E, Stuart DI, Metoz F: ESPript: analysis of multiple sequence alignments in PostScript. / Bioinformatics 1999, 15:305-08. matics/15.4.305">CrossRef
    28. Ma C, Xu P, Dou Y, Qu Y: Highly efficient conversion of lactate to pyruvate using whole cells of Acinetobacter sp. / Biotechnol Prog 2003, 19:1672-676. CrossRef
    29. Xue Y, Xu S, Liu Z, Zheng Y, Shen Y: Enantioselective biocatalytic hydrolysis of (r, s)-mandelonitrile for production of (r)-(?-mandelic acid by a newly isolated mutant strain. / J Ind Microbiol Biotechnol 2011, 38:337-45. CrossRef
    30. Rey P, Rossi JC, Taillades J, Gros G, Nore O: Hydrolysis of nitriles using an immobilized nitrilase: applications to the synthesis of methionine hydroxy analogue derivatives. / J Agric Food Chem 2004, 52:8155-162. CrossRef
    31. Yadav GD, Sivakumar P: Enzyme-catalysed optical resolution of mandelic acid via rs(?+)-methyl mandelate in non-aqueous media. / Biochem Eng J 2004, 19:101-07. CrossRef
    32. Sambrook J, Fritsch EF, Maniatis T: / Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
    33. Janssen AJ, Trijbels FJ, Sengers RC, Smeitink JA, van den Heuvel LP, Wintjes LT, Stoltenborg-Hogenkamp BJ, Rodenburg RJ: Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. / Clin Chem 2007, 53:729-34. CrossRef
    34. Nagel M, Andreesen JR: Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini . / Arch Microbiol 1990, 154:605-13. CrossRef
    35. Markwell MA, Haas SM, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. / Anal Biochem 1978, 87:206-10. CrossRef
  • 作者单位:Tianyi Jiang (1)
    Chao Gao (1)
    Peipei Dou (1) (2)
    Cuiqing Ma (1)
    Jian Kong (1)
    Ping Xu (1) (2)

    1. State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
    2. State Key Laboratory of Microbial Metabolism and Schoolof Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
  • ISSN:1475-2859
文摘
Background NAD-independent l-lactate dehydrogenase (l-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. Results Val-108 of l-iLDH was changed to Ala by rationally site-directed mutagenesis. The l-iLDH mutant exhibited much higher activity than wide-type l-iLDH towards l-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant l-iLDH as a biocatalyst, 40 g·L-1 of dl-mandelic acid was converted to 20.1 g·L-1 of d-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L-1 of benzoylformic acid. Conclusions A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure d-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700