Rapid and accurate evaluation of the binding energies and the individual N-H···O=C, N-H···N, C-H···O=C, and C-H···N interaction energies for hydrogen-bonded peptide-base complexes
详细信息    查看全文
  • 作者:CuiYing Huang (1)
    Yang Li (1)
    ChangSheng Wang (1)
  • 关键词:hydrogen bond ; peptide ; base complexes ; total binding energy ; individual hydrogen bonding energy ; dipole ; dipole interaction
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:56
  • 期:2
  • 页码:238-248
  • 全文大小:973KB
  • 参考文献:1. Hobza P, ?poner J. Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical / ab initio calculations. / Chem Rev, 1999, 99(11): 3247-276 CrossRef
    2. ?poner J, Leszczynski J, Hobza P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. / Biopolymers, 2002, 61(1): 3-1
    3. Mohajeri A, Nobandegani FF. Detection and evaluation of hydrogen bond strength in nucleic acid base pairs. / J Phys Chem A, 2008, 112(2): 281-95 CrossRef
    4. DeChancie J, Houk KN. The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site. / J Am Chem Soc, 2007, 129(17): 5419-429 CrossRef
    5. Wieczorek R, Dannenberg JJ. H-bonding cooperativity and energetics of α-helix formation of five 17-amino acid peptides. / J Am Chem Soc, 2003, 125(27): 8124-129 CrossRef
    6. Wieczorek R, Dannenberg JJ. Comparison of fully optimized α- and 310-helices with extended β-strands. An oniom density functional theory study. / J Am Chem Soc, 2004, 126(43): 14198-4205 CrossRef
    7. Salvador P, Kobko N, Wieczorek R, Dannenberg JJ. Calculation / trans-hydrogen-bond 13C-15N three-bond and other scalar / J-couplings in cooperative peptide models. A density functional theory study. / J Am Chem Soc, 2004, 126(43): 14190-4197 CrossRef
    8. Tong Y, Mei Y, Li YL, Ji CG, Zhang JZH. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. / J Am Chem Soc, 2010, 132(14): 5137-142 CrossRef
    9. Lejeune D, Delsaux N, Charloteaux B, Thomas A, Brasseur R. Protein-nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. / Prot Struct Funct Bioinfor, 2005, 61(2): 258-71 CrossRef
    10. Seeman NC, Rosenberg JM, Rich A. Sequence-specific recognition of double helical nucleic acids by proteins. / Proc Nat Acad Sci USA, 1976, 73(3): 804-08 CrossRef
    11. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. / J Mol Biol, 2003, 327(4): 781-96 CrossRef
    12. Cheng AC, Frankel AD. / Ab initio interaction energies of hydrogen-bonded amino acid side chain-nucleic acid base interactions. / J Am Chem Soc, 2004, 126(2): 434-35 CrossRef
    13. Jeong E, Kim H, Lee SW, Han K. Discovering the interaction propensities of amino acids and nucleotides from protein-RNA complexes. / Mol Cells, 2003, 16(2): 161-67
    14. Hunter KC, Millen AL, Wetmore SD. Effects of hydrogen-bonding and stacking interactions with amino acids on the acidity of uracil. / J Phys Chem B, 2007, 111(7): 1858-871 CrossRef
    15. Dunning TH Jr. A road map for the calculation of molecular binding energies. / J Phys Chem A, 2000, 104(40): 9062-080 CrossRef
    16. ?poner J, Jure?ka P, Hobza P. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. / J Am Chem Soc, 2004, 126(32): 10142-0151 CrossRef
    17. Dabkowska I, Jure?ka P, Hobza P. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. / J Chem Phys, 2005, 122(20): 204322 CrossRef
    18. Riley KE, Pitoňák M, ?erny J, Hobza P. On the structure and geometry of biomolecular binding motifs(hydrogen-bonding, stacking, X-H…π): WFT and DFT calculations. / J Chem Theory Comput, 2010, 6(1): 66-0 CrossRef
    19. Rejnek J, Hobza P. Hydrogen-bonded nucleic acid base pairs containing unusual base tautomers: complete basis set calculations at the MP2 and CCSD(T) levels. / J Phys Chem B, 2007, 111(3): 641-45 CrossRef
    20. Vargas R, Garza J, Friesner RA, Stern H, Hay BP, Dixon DA. Strength of the N-H…O=C and C-H…O=C bonds in formamide and / N-methylacetamide dimmers. / J Phys Chem A, 2001, 105(20): 4963-968 CrossRef
    21. Asensio A, Kobko N, Dannenberg JJ. Cooperative hydrogen-bonding in adenine-thymine and guanine-cytosine base pairs. Density functional theory and m?ller-plesset molecular orbital study. / J Phys Chem A, 2003, 107(33): 6441-443 CrossRef
    22. Scheiner S. Relative strengths of NH…O and CH…O hydrogen bonds between polypeptide chain segments. / J Phys Chem B, 2005, 109(33): 16132-6141 CrossRef
    23. Scheiner S. Contributions of NH…O and CH…O hydrogen bonds to the stability of β-sheets in proteins. / J Phys Chem B, 2006, 110(37): 18670-8679 CrossRef
    24. Chin W, Piuzzi F, Dimicoli I, Mons M. Probing the competition between secondary structures and local preferences in gas phase isolated peptide backbones. / Phys Chem Chem Phys, 2006, 8(9): 1033-048 CrossRef
    25. Sun CL, Jiang XN, Wang CS. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides. / J Comput Chem, 2009, 30(15): 2567-575 CrossRef
    26. Li Y, Jiang XN, Wang CS. Rapid evaluation of the binding energies in hydrogen-bonded amide-thymine and amide-uracil dimers in gas phase. / J Comput Chem, 2011, 32(5): 953-66 CrossRef
    27. Li Y, Wang CS. Rapid evaluation of the binding energies between peptide amide and DNA base. / J Comput Chem, 2011, 32(13): 2765-772 CrossRef
    28. Wang CS, Sun CL. Investigation on the individual contributions of N-H…O=C and C-H…O=C interactions to the binding energies of β-sheet models. / J Comput Chem, 2010, 31(5): 1036-044
    29. Jiang XN, Wang CS. Rapid prediction of the hydrogen bond cooperativity in / N-methylacetamide chains. / ChemPhysChem, 2009, 10(18): 3330-336 CrossRef
    30. Jiang XN, Sun CL, Wang CS. A scheme for rapid prediction of cooperativity in hydrogen bond chains of formamides, acetamides, and / N-methylformamides. / J Comput Chem, 2010, 31(7): 1410-420
    31. Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. / Mol Phys, 1970, 19(4): 553-66 CrossRef
    32. Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers. / J Chem Phys, 1996, 105(24): 11024-1031 CrossRef
    33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA. Jr., T. V, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA: / Gaussian 03. Revision B. 02. Pittsburgh(PA): Gaussian, Inc. 2003
    34. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. / J Am Chem Soc, 1995, 117(19): 5179-197 CrossRef
    35. Kaminsky GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA field for proteins via comparison with accurate quantum chemical calculations on peptides. / J Phys Chem B, 2001, 105(28): 6474-487 CrossRef
    36. MacKerell AD, Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. / J Phys Chem B, 1998, 102(18): 3586-616 CrossRef
  • 作者单位:CuiYing Huang (1)
    Yang Li (1)
    ChangSheng Wang (1)

    1. School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
  • ISSN:1869-1870
文摘
The binding energies of thirty-six hydrogen-bonded peptide-base complexes, including the peptide backbone-ase complexes and amino acid side chain-base complexes, are evaluated using the analytic potential energy function established in our lab recently and compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparison indicates that the analytic potential energy function yields the binding energies for these complexes as reasonable as MP2 does, much better than the force fields do. The individual N-H…O=C, N-H…N, C-H…O=C, and C-H…N attractive interaction energies and C=O…O=C, N-H…H-N, C-H…H-N, and C-H…H-C repulsive interaction energies, which cannot be easily obtained from ab initio calculations, are calculated using the dipole-dipole interaction term of the analytic potential energy function. The individual N-H…O=C, C-H…O=C, C-H…N attractive interactions are about ?.3±1.8, ?.2±0.4, and ?.8 kcal/mol, respectively, the individual N-H…N could be as strong as aboutt -8.1 kcal/mol or as weak as ?.0 kcal/mol, while the individual C=O…O=C, N-H…H-N, C-H…H-N, and C-H…H-C repulsive interactions are about 1.8±1.1, 1.7±0.6, 0.6±0.3, and 0.35±0.15 kcal/mol. These data are helpful for the rational design of new strategies for molecular recognition or supramolecular assemblies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700