Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae)
详细信息    查看全文
  • 作者:Duraisamy Amerasan ; Thiyagarajan Nataraj ; Kadarkarai Murugan…
  • 关键词:Green synthesis ; Mosquitocidal nanoparticles ; Entomopathogenic fungi ; Microbial control ; Mosquito ; borne diseases ; Nanobiotechnologies
  • 刊名:Journal of Pest Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:89
  • 期:1
  • 页码:249-256
  • 全文大小:918 KB
  • 参考文献:Adak T, Kaur S, Singh OP (1999) Comparative susceptibility of different members of the Anopheles culicifacies complex to Plasmodium vivax. Trans R Soc Trop Med Hyg 93:573–577CrossRef PubMed
    Ahmad A, Mukherjee P, Senapati S (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318CrossRef
    Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53CrossRef
    Almirón WR, Brewer ME (1996) Classification of immature stage habitats of Culicidae (Diptera) collected in Córdoba, Argentina. Mem Inst Oswaldo Cruz 91:1–9CrossRef PubMed
    Amalraj D, Vasuki V, Kalyanasundaram M, Tyagi BK, Das PK (1988) Laboratory and field evaluation of three insect regulators against mosquito vectors. Indian J Med Res 87:24–31PubMed
    Balagurunathan R, Radhakrishnan M, Babu Rajendran R, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48:331PubMed
    Banu AN, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:2869–2877CrossRef PubMed
    Banu AN, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113:3843–3851CrossRef PubMed
    Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397CrossRef PubMed
    Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164CrossRef
    Birla S, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179CrossRef PubMed
    Crompton PD, Pierce SK, Miller LH (2010) Advances and challenges in malaria vaccine development J. Clin Investig 120:4168–4178CrossRef
    Cushing M, Bellier O, Volant P, Aochi H, Baize S, Berge-Thierry C (2004) Recent findings integrated for seismic hazard assessment: the case study of the Durance Fault. OECD/NEA Workshop, Tsukuba
    Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis 3:174–179PubMedCentral CrossRef
    Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRef PubMed
    Elechiguerra JL, Burt JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10CrossRef
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRef PubMed
    Finney DJ (1971) Probit analysis. Cambridge University Press, London
    Ganesh Babu MM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Coll Surf B Biointerf 74:191–195CrossRef
    Hill AVS (2011) Vaccines against malaria. Phil Trans R Society B 366:2806–2814CrossRef
    Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRef
    Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627CrossRef PubMed
    Kamalakannan S, Gobinath C, Ananth S (2014) Synthesis and characterization of fungus mediated silver nanoparticle for toxicity on filarial vector, Culex quinquefasciatus. Int J Pharm Sci Rev Res 24:124–132
    Karunamoorthi K (2012) Global malaria burden: socialomics implications. J Socialomics 1:e108CrossRef
    Kaur S, Adak T, Singh OP (2000) Susceptibility of species A, B and C of Anopheles culicifacies complex to Plasmodium yoelii and Plasmodium vinckei petteri infections. J Parasitol Res 86:1345–1348CrossRef
    Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q (2000) Mutations in Plasmodium falciparum cytochrome that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44:2100–2108PubMedCentral CrossRef PubMed
    Martinez-Castanon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348CrossRef
    Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRef
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. J Nanotechnol 16:2346–2353CrossRef
    Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Kumar PAV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRef
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRef
    Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRef PubMed
    Nagajyothi PC, Sreekanth TVM, Lee JL, Lee KD (2014) Mycosynthesis: Antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract. J Photochem Photobiol B Biol 130:299–304CrossRef
    Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Desn 2:293–298CrossRef
    Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Res J Microbiol 9:34–42CrossRef
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720PubMedCentral CrossRef PubMed
    Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790CrossRef PubMed
    Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381CrossRef
    Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRef
    Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, Nicoletti M (2001) Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res 15:30–33CrossRef PubMed
    Rasoanaivo P, Ratsimamanga-Urveg S, Milijaona R, Rafatro M, Rakoko-Tasimamamnga A, Galeffi C, Nicoletti M (1994) In vitro and in vivo chloroquine-potentiating action of Strychnos myrtoides alkaloids against chloroquine-resistant strains of malaria. Planta Med 60:13–18CrossRef PubMed
    Rasoanaivo P, Ratsimamanga-Urveg S, Rafatro H, Ramanitrahasimbola D, Palazzino G, Galeffi C, Nicoletti M (1998) Alkaloids of Hernandia voyronii: chloroquine-potentiating activity and structure elucidation of herveline D. Planta Med 64:56–61CrossRef
    Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109:141–161PubMedCentral CrossRef PubMed
    Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnol 17:3482–3489CrossRef
    Roy S, Mukherjee T, Chakraborty S, Das TK (2014) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Digest J Nanomats Biost 8:197–205
    Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831CrossRef PubMed
    Sathya A, Ambikapathy V (2012) Studies on the phytochemistry, antimicrobial activity and green synthesis of nanoparticles using Cassia tora L. Drug Invent Today 4:408–410
    Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using the aqueous extract from the compaction producing fungal strain. Process Biochem 44:939–943CrossRef
    Shankar S, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRef
    Sharma CS, Nema RK, Sharma VK (2009) Synthesis, anticonvulsant activity and in silico study of some novel amino acids incorporated bicyclo compounds. S J Pharm Sci 2:42–47
    Sivaraman SK, Elango I, Kumar S, Santhanam V (2009) A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci 3:1055–1059
    Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184CrossRef PubMed
    Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticl 2:125–132CrossRef
    Soni N, Prakash S (2014) Microbial synthesis of spherical nanosilver and nanogold for mosquito control. Ann Microbiol 64:1099–1111CrossRef
    Subbarao SK, Adak T, Vasantha K, Joshi Raghavendra K, Cochrane AH, Nussenzwig RS, Sharma VP (1988) Susceptibility of Anopheles culicifacies species A and B to Plasmodium vivax and Plasmodium falciparum as determined by immuno-radiomatric assay. Trans R Soc Trop Med Hyg 82:394–397CrossRef PubMed
    Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi:10.​1007/​s00436-015-4556-2
    Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRef PubMed
    Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: Interdisciplinary science of applications. Afr J Biotechnol 12:219–226
    Turschner S, Efferth T (2009) Drug resistance in Plasmodium: natural products in the fight against malaria. Mini Rev Med Chem 9:206–214CrossRef PubMed
    Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Coll Surf B Biointerf 53:55–59CrossRef
    Wei X, Zhou H, Xu L, Luo M, Liu H (2014) Sunlight-induced biosynthesis of silver nanoparticles by animal and fungus biomass and their characterization. J Chem Technol Biotechnol 89:305–311CrossRef
    WHO (2014) Malaria. Fact sheet No. 94
    Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia Y (2006) Manoeuvring the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675CrossRef PubMed
    Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865CrossRef
    Yixia Z, Guo G, Qirong Q, Daxiang C (2012) Chloroplasts-mediated biosynthesis of nanoscale Au–Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:1–8CrossRef
  • 作者单位:Duraisamy Amerasan (1)
    Thiyagarajan Nataraj (1)
    Kadarkarai Murugan (1)
    Chellasamy Panneerselvam (1)
    Pari Madhiyazhagan (1)
    Marcello Nicoletti (2)
    Giovanni Benelli (3)

    1. Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
    2. Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
    3. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Agriculture
    Plant Pathology
    Plant Sciences
    Ecology
    Forestry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1612-4766
文摘
Each year, mosquito-borne diseases infect nearly 700 million people, resulting more than one million deaths. In this study, we proposed a Metarhizium anisopliae-based method of green synthesis of silver nanoparticles to control the rural malaria vector Anopheles culicifacies. Silver nanoparticles were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction. In acute toxicity experiments, larvae (I–IV instar) and pupae of A. culicifacies were exposed to M. anisopliae-synthesized silver nanoparticles (15, 30, 45, 60, and 75 ppm). LC50 of silver nanoparticles was 32.8 ppm (I), 39.8 ppm (II), 45.9 ppm (III), 51.9 (IV), and 60.0 ppm (pupa). Lower dosages of myco-synthesized silver nanoparticles have detrimental effects on larval and pupal development of A. culicifacies. EI50 was 14.9 ppm. Overall, this research highlighted that myco-synthesized silver nanoparticles can be proposed as effective tools for eco-friendly control of the rural malaria vector A. culicifacies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700