Predefined Redundant Dictionary for Effective Depth Maps Representation
详细信息    查看全文
  • 作者:Dorsaf Sebai ; Faten Chaieb ; Faouzi Ghorbel
  • 关键词:Sparse representation ; Predefined redundant dictionary ; Depth maps ; Sparsity ratio ; Redundancy factor ; Cumulative coherence
  • 刊名:3D Research
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:7
  • 期:2
  • 全文大小:1,952 KB
  • 参考文献:1.Andrle, M., & Rebollo-Neira, L. (2008). From cardinal spline wavelet bases to highly coherent dictionaries. Journal of Physics, Part A, Mathematical and Theoretical, 41, 172001–172011.MathSciNet CrossRef MATH
    2.Bowley, J., & Rebollo-Neira, L. (2009). Sparse image representation by discrete cosine/B-spline based dictionaries. arXiv:​0909.​1310 .
    3.Candès, E., & Donoho, D. (2004). New tight frames of curvelets and optimal representations of objects with piecewise \({C}^{2}\) singularities. Communications on Pure and Applied Mathematics, 57, 219–266.MathSciNet CrossRef MATH
    4.Candès, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489–509.MathSciNet CrossRef MATH
    5.Cheung, G., Ishida, J., Kubota, A., & Ortega, A. (2011). Transform domain sparsification of depth maps using iterative quadratic programming. In Proceedings of the IEEE international conference on image processing, 2011.
    6.Cheung, G., Kubota, A., & Ortega, A. (2010). Sparse representation of depth maps for efficient transform coding. In Proceedings of the 28th picture coding symposium, 2010.
    7.Daribo, I., Tillier, C., & Pesquet-Popescu, B. (2008). Adaptive wavelet coding of the depth map for stereoscopic view synthesis. In Proceedings of IEEE workshop on multimedia signal processing, 2008.
    8.Donoho, D. (1999). Wedgelets: Nearly minimax estimation of edges. Annals of Statistics, 27, 859–897.MathSciNet CrossRef MATH
    9.Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–1306.MathSciNet CrossRef MATH
    10.Forster, E. C., Lowe, T., Wenger, S., & Magnor, M. (2015). RGB-guided depth map compression via compressed sensing and sparse coding. In Proceedings of picture coding symposium, 2015.
    11.Gotchev, A., Egiazarian, K., Vesma, J., & Saramki, T. (2001). Edge-preserving image resizing using modified B-splines. In Proceedings of IEEE international conference on acoustics speech signal processing, 2001.
    12.Gribonval, R., & Nielsen, M. (2003). Sparse representations in unions of bases. IEEE Transactions on Information Theory, 49, 3320–3325.MathSciNet CrossRef MATH
    13.Gribonval, R., & Vandergheynst, P. (2006). On the exponential convergence of matching pursuit in quasi-incoherent dictionaries. IEEE Transactions on Information Theory, 52, 255–261.MathSciNet CrossRef MATH
    14. http://​research.​microsoft.​com/​en-us/​downloads/​ .
    15. https://​hevc.​hhi.​fraunhofer.​de/​svn/​svn 3DVCSoftware/tags/HTM-4.1.
    16. http://​www.​tanimoto.​nuee.​nagoya-u.​ac.​jp .
    17.Huo, X. (1999). Sparse image representation via combined transforms. PhD Thesis, Stanford University.
    18.Kim, W. S., Ortega, A., Lai, P., Tian, D., & Gomila, C. (2009). Depth map distortion analysis for view rendering and depth coding. In IEEE international conference on image processing, 2009.
    19.Lee, S., & Ortega, A. (2012). Adaptive compressed sensing for depth map compression using graph-based transform. In Proceedings of IEEE international conference on image processing, 2012.
    20.Liu, Y., Vijayanagar, K. R., & Kim, J. (2014). Quad-tree partitioned compressed sensing for depth map coding. In Proceedings of IEEE international conference on acoustics, speech and signal processing, 2014.
    21.Maitre, M., & Do, M. N. (2010). Depth and depth-color coding using shape-adaptive wavelets. Journal of Visual Communication and Image Representation, 21, 513–522.CrossRef
    22.Mallat, S. (2009). A wavelet tour of signal processing. Burlington, MA: Elsevier.MATH
    23.Mallat, S., & Zhang, Z. (1993). Matching pursuits with time–frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397–3415.CrossRef MATH
    24.Merkle, P., Bartnik, C., & Muller, K. (2012). 3D video: Depth coding based on inter-component prediction of block partitions. In Proceedings of picture coding symposium, 2012.
    25.Merkle, P., Morvan, Y., Smolic, A., Farin, D., Muller, K., de With, P. H. N., et al. (2008). The effects of multiview depth video compression on multiview rendering. Signal Processing: Image Communication Journal, 24, 73–88.
    26.Merkle, P., Smolic, A., Muller, K., & Wiegand, T. (2007). Multi-view video plus depth representation and coding. In IEEE international conference on image processing, 2007.
    27.Muller, K., Schwarz, H., Marpe, D., Bartnik, C., Bosse, S., Brust, H., et al. (2013). 3D high efficiency video coding for multi-view video and depth data. IEEE Transactions on Image Processing, Special Issue on 3D Video Representation, Compression and Rendering, 22, 3366–3378.MathSciNet
    28.Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit recursive function approximation with applications to wavelet decomposition. In Proceedings of IEEE Asilomar conference on signals systems and computers, 1993.
    29.Peotta, L., Granai, L., & Vandergheynst, P. (2006). Image compression using an edge adapted redundant dictionary and wavelets. Elsevier Signal Processing Journal, 86, 444–456.CrossRef MATH
    30.Rebollo-Neira, L., & Bowley, J. (2013). Sparse representation of astronomical images. Journal of the Optical Society of America A, 30, 758–768.CrossRef
    31.Rehman, A., Zeng, K., & Wang, Z. (2015). Display device-adapted video quality-of-experience assessment. In Electronic imaging, human vision and electronic imaging XX, 2015.
    32.Schnass, K., & Vandergheynst, P. (2008). Dictionary preconditioning for greedy algorithms. IEEE Transactions on Signal Processing, 56, 1994–2002.MathSciNet CrossRef
    33.Shen, G., Kim, W. S., Naran, S. K., Ortega, A., Jaejoon, L., & HoCheon, W. (2010). Edge-adaptive transforms for efficient depth map coding. In Proceedings of IEEE picture coding symposium, 2010.
    34.Sullivan, J. G., Ohm, J. R., Han, W. J., & Wiegand, T. (2012). Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22, 1649–1668.CrossRef
    35.Tanimoto, M., Fujii, T., Suzuki, K., Fukushima, N., & Mori, Y. (2008). Reference softwares for depth estimation and view synthesis. In ISO/IEC JTC1/SC29/WG11 MPEG2008/M15377, 2008.
    36.Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50, 2231–2242.MathSciNet CrossRef MATH
    37.i Ventura, R. M. F., Vandergheynst, P., & Frossard, P. (2006). Low rate and flexible image coding with redundant representations. IEEE Transactions on Image Processing, 15, 726–739.CrossRef
    38.Willett, R. M., & Nowak, R. D. (2003). Platelets: A multiscale approach for recovering edges and surfaces in photon-limited medical imaging. IEEE Transactions on Medical Imaging, 22, 332–350.CrossRef
  • 作者单位:Dorsaf Sebai (1)
    Faten Chaieb (1)
    Faouzi Ghorbel (1)

    1. Cristal Laboratory, ENSI, Manouba, Tunisia
  • 刊物类别:Engineering
  • 刊物主题:Computer Imaging, Vision, Pattern Recognition and Graphics
    Signal,Image and Speech Processing
  • 出版者:3D Display Research Center, co-published with Springer
  • ISSN:2092-6731
文摘
The multi-view video plus depth (MVD) video format consists of two components: texture and depth map, where a combination of these components enables a receiver to generate arbitrary virtual views. However, MVD presents a very voluminous video format that requires a compression process for storage and especially for transmission. Conventional codecs are perfectly efficient for texture images compression but not for intrinsic depth maps properties. Depth images indeed are characterized by areas of smoothly varying grey levels separated by sharp discontinuities at the position of object boundaries. Preserving these characteristics is important to enable high quality view synthesis at the receiver side. In this paper, sparse representation of depth maps is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm the effectiveness at producing sparse representations, and competitiveness, with respect to candidate state-of-art dictionaries. Finally, the resulting method is shown to be effective for depth maps compression and represents an advantage over the ongoing 3D high efficiency video coding compression standard, particularly at medium and high bitrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700