Electrodeposition of Ni-Mg alloys from 1-butyl-3-methylimidazolium chloride/glycerin eutectic-based ionic liquid
详细信息    查看全文
  • 作者:Cunying Xu ; Jiwen Zhao ; Yixin Hua ; Qibo Zhang
  • 关键词:Ionic liquid ; Ni ; Mg alloy ; Electrodeposition ; Nucleation/growth
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:793-800
  • 全文大小:1,157 KB
  • 参考文献:1.Ma M, Hatano Y, Abe T, Watanabe K (2005) J Alloys Compd 391:213–220CrossRef
    2.Lomnessa JK, Hamptonb MD, Giannuzzia LA (2002) Int J Hydrog Energy 27:915–920CrossRef
    3.Rangelova V, Spassov T (2002) J Alloys Compd 345:148–154CrossRef
    4.Janot R, Cuevas F, Latroche M, Percheron A (2006) Intermetallics 14:163–169CrossRef
    5.Aydinbeylia N, Celikb ON, Gasana H, Aybarc K (2006) Int J Hydrog Energy 31:2266–2273CrossRef
    6.Liu WH, Wu HQ, Lei YQ (1997) J Alloys Compd 252:234–243CrossRef
    7.Akiyama T, Saito K, Saitaa I (2003) J Electrochem Soc E 150:450–454CrossRef
    8.Liao L, Liu W, Xiao X (2004) J Electroanal Chem 566:341–350CrossRef
    9.Lu D, Lu W (2009) Mater Chem Phys 117:395–398CrossRef
    10.Buzzeo MC, Evans RG, Compton RG (2004) Chem Phys Chem 5:1106–1120
    11.Abedin SZE, Endres F (2006) Chem Phys Chem 7:58–61
    12.Su CN, An MZ, Yang PX, Gu HW, Guo XH (2010) Appl Surf Sci 256:4888–4893CrossRef
    13.Gu CD, You YH, Yu YL, Qu SX, Tu JP (2011) Surf Coat Tech 205:4928–4933CrossRef
    14.Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) J Am Chem Soc 126:9142–9147CrossRef
    15.Ru JJ, Hua YX, Xu CY, Li J, Li Y, Wang D, Qi CC, Jie YF (2015) Appl Surf Sci 335:153–159CrossRef
    16.Cottrell CG (1903) Z Phys Chem 42:385–431
    17.Scharifker BR, Hills G (1983) Electrochim Acta 28:879–889CrossRef
    18.Díaz-Morales O, Mostany J, Borrás C, Scharifker BR (2013) J Solid State Electrochem 17:345–351CrossRef
    19.Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13–23CrossRef
    20.Xu XH, Hussey CL (1993) J Electrochem Soc 140:618–626CrossRef
    21.Zhang QP, Hua YX, Wang R (2014) Phys Chem Chem Phys 16:27088–27095CrossRef
    22.Yang HY, Guo XW, Chen XB, Wang SH, Wu GH, Ding J, Birbilis N (2012) Electrochim Acta 63:131–138CrossRef
    23.Watanabe T (2004) Nano plating: microstructure formation theory of plated films and a database of plated films. Elsevier Science Publisher, Amsterdam
    24.Liu WH (2005) J Alloys Compd 404-406:694–698CrossRef
    25.Ruggeri S, Lenain C, Roue L, Liang GX, Huot J, Schulz R (2002) J Alloys Compd 339:195–201CrossRef
  • 作者单位:Cunying Xu (1) (2)
    Jiwen Zhao (1)
    Yixin Hua (1) (2)
    Qibo Zhang (1) (2)

    1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People’s Republic of China
    2. State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization, Kunming University of Science and Technology, Kunming, 650093, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
The electrodeposition of Ni-Mg alloys in 1-butyl-3-methylimidazolium chloride/glycerin (BMIC/GL, 1:1 M ratio) eutectic-based ionic liquid containing 0.1 M MgCl2 and 0.05 M NiCl2 was investigated. It is found by cyclic voltammograms and analysis of the chronoamperometric transient that Mg can be co-deposited with Ni under the inducement effect of Ni in this solvent, and the co-electrodeposition of Ni and Mg on a glassy carbon electrode is a diffusion-controlled process, which follows an instantaneous nucleation and three-dimensional growth pattern. In addition, the composition, surface morphology, structure, and property for hydrogen storage of Ni-Mg alloy deposits were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopic (SEM), and charge and discharge test, respectively. The deposition potential plays a central role in controlling the composition, surface morphology as well as the electrochemical hydrogen storage capacity of the resultant Ni-Mg alloys. The alloy obtained at −1.2 V (vs. Ag) is a two-phase mixture consisting of a solid solution and an amorphous phase, which exhibits the best electrochemical capacity of 81.6 mAh g−1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700