Hydrogen sulfide in regulation of frog myocardium contractility
详细信息    查看全文
  • 作者:N. N. Khaertdinov (1)
    D. R. Ahmetshina (1)
    A. L. Zefirov (2)
    G. F. Sitdikova (1)
  • 关键词:hydrogen sulfide ; myocardial contractility ; adenylate cyclase ; nitric oxide
  • 刊名:Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:7
  • 期:1
  • 页码:52-57
  • 全文大小:192KB
  • 参考文献:1. Beauchamp R.O. Jr., Bus J., Popp J., Boreiko C., Andjelkovich D. 1984. A critical review of the literature on hydrogen sulfide toxicity. / Crit. Rev. Toxicol. 13, 25-7. CrossRef
    2. Sitdikova G.F., Zefirov A.L. 2006. Gaseous mediators in the nerve system. / Ros. Fiziologicheskiy Zh. im. I.M. Sechenova (Rus.). 97(7), 872-82.
    3. Sitdikova G.F., Zefirov A.L. 2010. Hydrogen sulfide: From the Parisian sewer system to a signaling molecule. / Priroda (Rus.). 9, 29-7.
    4. Gerasimova E.V., Sitdikova G.F., Zefirov A.L. 2008. Hydrogen sulfide as an endogenous modulator of mediator release at the neuromuscular synapse of the frog. / Neyrokhimia (Rus.). 25(1-), 138-45.
    5. Elsey D., Fowkes R., Baxter G. 2010. Regulation of cardiovascular cell function by hydrogen sulfide (H2S) cell biochemistry and function. / Cell Biochem. Funct. 28, 95-06. CrossRef
    6. Kimura H. 2010. Hydrogen sulfide: From brain to gut. / Antioxid. Redox Signal. 12, 1111-123. CrossRef
    7. Sitdikova G., Weiger T., Hermann A. 2010. Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. / Pfluegers Arch. -Eur. J. Physiol. 459, 389-97. CrossRef
    8. Gadalla M., Snyder S. 2010. Hydrogen sulfide as gasotransmitter. / J. Neurochem. 113, 14-6. CrossRef
    9. Hermann A., Sitdikova G., Weiger T. 2010. Gase als zellulare Signalstoffe. / Biol. Unserer Zeit. 40, 185-93. CrossRef
    10. Geng B., Yang J., Qi Y., Zhao J., Pang Y., Du J., Tang C. 2004. H2S generated by heart in rat and its effects on cardiac function. / Biochem. Biophys. Res. Commun. 313(2), 362-68. CrossRef
    11. Yong Q., Pan T., Hu L., Bian J. 2008. Negative regulation of β-adrenergic function by hydrogen sulfide in the rat hearts. / J. Mol. Cell Cardiol. 44(4), 701-10. CrossRef
    12. Bian J., Yong Q., Pan T., Feng Z., Ali M., Zhou S., Moore P. 2006. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. / J. Pharm. Exp. Ther. 316(2), 670-78. CrossRef
    13. Dombkowski R., Russell M., Olson K. 2004. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. / Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, 678-85. CrossRef
    14. Olson K. 2005. Vascular actions of hydrogen sulfide in nonmammalian vertebrates. / Antioxid. Redox Signal. 7, 804-12. CrossRef
    15. Abramochkin D.V., Moiseyenko L.S., Kuzmin V.S. 2009. The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. / Byull. Exp. Biol. Meditsiny (Rus.). 147(6), 617-21.
    16. Sun Y., Cao Y., Wang W., Ma S., Yao T., Zhu Y. 2008. Hydrogen sulfide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocites. / Cardiovasc. Res. 79(4), 632-41. CrossRef
    17. Xu M., Wu Y., Li Q., Wang F., He R. 2007. Electrophysiological effects of hydrogen sulfide on guinea pig papillary muscles in vitro. / Sheng Li Xue Bao. 59(2), 215-20.
    18. Sitdikova G.F., Khaertdinov N.N., Zefirov A.L. 2011. Investigation of the role of calcium and potassium channels in hydrogen sulfide effects on myocardial contractility in frog. / Byull. Exp. Biol. Meditsiny (Rus.). 151(2), 124-28.
    19. Kimura H. 2000. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. / Biochem. Biophys. Res. Commun. 267, 129-33. CrossRef
    20. Chesnais J., Fischmeister R., Méry P. 1999. Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. / J. Physiol. 518, 449-61. CrossRef
    21. Dominy J., Stipanuk M. 2004. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. / Nutr. Rev. 62(9), 348-53.
    22. Teague B., Asiedu S., Moore P. 2002. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. / Br. J. Pharmacol. 137(2), 139-45. CrossRef
    23. Cheng Y., Ndisang J., Tang G., Cao K., Wang R. 2004. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. / Am. J. Physiol. Heart Circ. Physiol. 287(5) H2316-323. CrossRef
    24. Zefirov A.L., Sitdikova G.F. 2010. / Ionnye kanaly vozbudimoy kletki (struktura, funktsiya, patologiya) (Ion Channels of Excitable Cell (Structure, Function, Pathology)). Kazan: Art-kafe.
    25. Kamp T., Hell J. 2000. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. / Circ. Res. 87, 1095-102. CrossRef
    26. Tijskens P., Meissner G., Franzini-Armstrong C. 2003. Location of ryanodine and dihydropyridine receptors in frog myocardium. / Biophys. J. 84, 1079-092. CrossRef
    27. Odnoshivkina Yu.G., Petrov A.M., Zefirov A.L. 2011. The effect of activation of β2-adrenoceptors in mouse atriums on the force of contraction, Ca signals, and nitric oxide production. / Acta Naturae (Rus.). 3(1), 85-4.
    28. Sandberg M., Butt E., Nolte C., Fischer L., Halbrügge M., Beltman J., Jahnsen T., Genieser H., Jastorff B., Walter U. 1991. Characterization of Sp-5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole-3-5-monophosphorothioate (Sp-5,6-DCl-cBiMPS) as a potent and specific activator of cyclic-AMP-dependent protein kinase in cell extracts and intact cells. / Biochem. J. 279(2), 521-27.
    29. Sugita S., Baxter D., Byrne J. 1994. cAMP-independent effects of 8-(4-parachlorophenylthio)-cyclic AMP on spike duration and membrane currents in pleural sensory neurons of Aplysia. / J. Neurophysiol. 72(3), 1250-259.
    30. Connolly B., Willits P., Warrington B., Murray K. 1992. 8-(4-Chlorophenyl)thio-cyclic AMP is a potent inhibitor of the cyclic GMP-specific phosphodiesterase (PDE VA). / Biochem. Pharmacol. 44(12), 2303-306. CrossRef
    31. Keef K., Hume J., Zhong J. 2001. Regulation of cardiac and smooth muscle Ca2+ channels (Ca(V)1.2a,b) by protein kinases. / Am. J. Physiol. Cell Physiol. 281(6), C1743-756.
    32. Zaccolo M. 2009. cAMP signal transduction in the heart: Understanding spatial control for the development of novel therapeutic strategies. / Br. J. Pharmacol. 158, 50-0. CrossRef
    33. Jurevicius J., Skeberdis V., Fischmeister R. 2003. Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following β2-adrenergic stimulation of ICa,L in frog ventricular myocytes. / J. Physiol. 551(1), 239-52. CrossRef
    34. Sitdikova G.F., Gerasimova E.V., Khaertdinov N.N., Zefirov A.L. 2009. The role of cyclic nucleotides in the effects of hydrogen sulfide on mediator release in the neuromuscular synapse of frog. / Neyrokhimia (Rus.). 26(4), 1-.
    35. Kubo S., Doe I., Kurokawa Y., Nishikawa H., Kawabata A. 2007. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulde: Contribution to dual modulation of vascular tension. / Toxicology. 232, 138-46. CrossRef
    36. Zhao W., Wang R. 2002. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. / Am. J. Physiol. Heart Circ. Physiol. 283, 474-80.
    37. Hosoki R., Matsuki N., Kimura H. 1997. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. / Biochem. Biophys. Res. Commun. 237, 527-31. CrossRef
    38. Zhao W., Ndisang J., Wang R. 2003. Modulation of endogenous production of H2S in rat tissues. / Can. J. Physiol. Pharmacol. 81, 848-53. CrossRef
    39. Dittrich M., Jurevicius J., Georget M., Rochais F., Fleischmann B., Hescheler J., Fischmeister R. 2001. Local response of L-type Ca2+ current to nitric oxide in frog ventricular myocytes. / J. Physiol. 534(1), 109-21. CrossRef
    40. Lugnier C., Gauthier C., Le Bec A., Soustre H. 1992. Cyclic nucleotide phosphodiesterases from frog atrial fibers: Isolation and drug sensitivities. / Am. J. Physiol. 262, 654-60.
    41. Whiteman M., Li L., Kostetski I., Chu S., Siau J., Bhatia M., Moore P. 2006. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. / Biochem. Biophys. Res. Commun. 343, 303-10. CrossRef
  • 作者单位:N. N. Khaertdinov (1)
    D. R. Ahmetshina (1)
    A. L. Zefirov (2)
    G. F. Sitdikova (1)

    1. Kazan Federal University, ul. Kremlevskaya 18, Kazan, 420008, Russia
    2. Ministry of Health and Social Development of the Russian Federation, Kazan State Medical University, ul. Butlerova, 42, Kazan, 420012, Russia
文摘
Hydrogen sulfide (H2S) is an endogenously synthesized gaseous molecule which, along with nitric oxide and carbon monoxide, induces a number of effects in cardiovascular system under normal and pathological conditions. In the present work, the effects and underlying mechanisms of the H2S donor sodium hydrosulfide (NaHS) on the isometric force of frog myocardium contraction have been studied. NaHS at the concentration of 100 μM induced negative inotropic effect and reduced the maximum velocity of the contraction and relaxation of the isolated ventricle strips. The substrate of H2S synthesis, L-cysteine (200 μM and 1 mM), induced the same effect, while the inhibitors of cystathionin-γ-lyase, the H2S-producing enzyme in heart, β-cyanoalanine (500 μM) and propargylglycine (500 μM), increased the amplitude of contraction. Inhibition of cystathionin-γ-lyase by β-cyanoalanine prevented the negative inotropic effect of L-cysteine. After the inhibition of adenylate cyclase by MDL-12,330A (3 μM) or phosphodiesterases by IBMX (200 μM), the effect of NaHS was less than that in the control. In the presence of membrane-penetrating analogous of cAMP, 8Br-cAMP (100 μM) and pCPT-cAMP (100 μM), the negative inotropic effect of NaHS was completely retained. The effect of NaHS significantly decreased after preliminary application of the NO donor, SNAP (10 μM), and did not change after the inhibition of NO synthases by L-NAME (100 μM). The results suggest the possibility of endogenous synthesis of H2S in frog myocardium and regulation of its contractility by the activation of phosphodiesterases hydrolyzing cAMP, which leads to a decrease in the activation of cAMP-dependent protein kinases and phosphorylation of voltage-dependent L-type Ca channels. As a result, the reduction of calcium entry into cardiomyocytes decreases the contractility of frog myocardium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700